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LPV-MRAC Method for Aircraft with Structural Damage
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Abstract: Abrupt structural damage poses significant challenges to the flight safety and flight quality of aircraft. In this paper,
a direct model reference adaptive control (MRAC) method based on a linear parameter-varying (LPV) model is proposed to
recover the control performance and flight quality of damaged aircraft. The design of the controller is based on a polytopic LPV
model and the higher order singular value decomposition (HOSVD) model reduction method to reduce the computational cost of
identifying the damaged aircraft model. The proposed controller also extends a previous MRAC method which assumes the input
matrix is unchanged for different damage cases by identifying an uncertain input parameter online. The developed LPV-MRAC
method is validated by simulation on NASA’s generic transport model (GTM) with left wing tip loss damage and shown to be
capable of compensating the damage effects and restoring the aircraft’s control performance shortly after the damage. The flight
quality of the closed-loop damaged aircraft is also evaluated by the C-star criterion and shown to be within Class I under the
proposed controller.

Key Words: Model reference adaptive control, Aircraft with structural damage, Uncertainty of input matrix, Polytopic LPV

models

1 Introduction

Modern aircraft, despite advanced instrumentation and

various fault-tolerant designs, face abrupt structural damage

like wing tip break up [1] or vertical-tail loss [2] at times.

It has been shown that abrupt structural damage to airframe

and engines, which can result in considerable deterioration

in flight performance and aircraft handling quality, has led

to quite a few aircraft accidents [3]. Nowadays, to recover

flight performance and aircraft handling quality has drawn

researchers’ effort in related fields, and lots of studies have

been conducted.

The team of Tao proposes a multivariable adaptive con-

trol algorithm, which is based on a nonlinear aircraft model,

and applies it to the simulation of a genetic transport

model (GTM) form NASA [1]. Nguyen proposes a hy-

brid adaptive control scheme with artificial neural networks,

which contains pre-trained and on-line learning networks,

and design a controller design is based on the nonlinear

model of the GTM [4, 5]. Santillo uses a control scheme

named Retrospective-Cost Adaptive Control and demon-

strates it to the GTM model successfully under vertical gust

disturbance[6]. The team of Hovakimyan proposes an L1

adaptive control algorithm [7, 8] and applies it in the flight

test of the GTM[9]. Yucelen uses a Derivative-Free MRAC

algorithm to simulate on the nonlinear model of an aircraft

with abrupt structural damage[10].

The methods above use either linear or nonlinear mod-

els to design control and adaptive laws, while Xu adopts an

MRAC control method with a polytopic LPV model to deal

with the uncertainties of structural and parametric changes

caused by abrupt structural damage [11]. In [11], Xu models

the damaged aircraft with polytopic LPV models to design

control laws and adaptive laws. The method is also demon-

strated to be effective, i.e. the controlled states converge

to stable values and the error asymptotically convergence

to zero. However, it assumes in [11] that the input matrix

B remains unchanged under different damage cases, which

This research is funded by National Natural Science Foundation

(NNSF) of China (Grant no.61273099).

simplifies the design but restricts its applicability. So in this

paper, we propose a direct MRAC scheme, which inherits

the polytopic LPV model in [11] to speed up the conver-

gence of adaptive parameters by reducing the computational

cost of identifying the damaged model. Further more, the

uncertainty of input matrix is explicitly considered by a ma-

trix column transformation to improve the applicability of

the proposed LPV-MRAC method.

The rest of this paper is organized as follows. Section 2

discusses the LPV model of aircraft with abrupt structural

damage in detail. Section 3 covers the design of control laws

and adaptive laws of the proposed LPV-MRAC method. A

case study on the GTM with left wing tip loss is carried out

in Section 4. White Gaussian measurement noises are added

to the aircraft states and simulation results are also analysed

therein. Furthermore, aircraft handling quality is evaluated

and compared before and after damage. Section 5 summaries

the LPV-MRAC method and proposes future research direc-

tions.

2 LPV Modelling of Structural Damaged Aircraft

2.1 Polytopic LPV Models
The dynamics of aircraft with structural damage can be

modelled by a general nonlinear ordinary differential equa-

tion as

ẋn = f(xn,un,p), (1)

where xn ∈ R
n, un ∈ R

m are the state and input vector,

respectively, and p ∈ R
l is a damage severity vector for the

l types of damage cases. (1) can be linearised around the

given operating point (xn0,un0), leading to a linear state-

space description with p as,

Δẋn = A(p)Δxn +B(p)Δun + f0(p), (2)

where Δxn = xn − xn0, Δun = un − un0, A(p) =
∂f(xn,un,p)

∂xn
|(xn0,un0), and B(p) = ∂f(xn,un,p)

∂un
|(xn0,un0).

Because an operating point is not the trim point in general,

an offset term f0(p) = f(xn0,un0,p) is added to the state-

space equation (2). Since A(p) , B(p) and f0(p) are time-

varying functions of the p, (2) is a typical linear parameter-

varying system and can be approximated by the following
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polytopic form

Δẋn =
k∑

i=1

αi(p)A
∗
iΔxn +

k∑
i=1

αi(p)B
∗
iΔun + f0(p),

(3)

where [A(p),B(p)] ∈ Ω � Co {[A∗
1,B

∗
1], . . . , [A

∗
k,B

∗
k]},

k is the number of polytopic vertexes, [A∗
i ,B

∗
i ] are some

known matrices, and Co {. . . } denotes the convex hull.

αi(p) is the interpolation coefficient which satisfies the fol-

lowing conditions,

k∑
i=1

αi(p) = 1, 0 � αi(p) � 1. (4)

The interpolation coefficient αi(p) and the offset term

f0(p) change with the damage severities, therefore the adap-

tive algorithm only needs to identify αi(p) and f0(p) to ob-

tain the model of the damaged aircraft.

Note in literature, the T-S fuzzy model [12] is similar to

the expressions in (3) (4), but the physical meaning of the

parameters and the relevant derivations are distinct.

2.2 Model Reduction through HOSVD
To avoid excessive computational load introduced by a

fine grid, the higher order singular value decomposition

(HOSVD) in [13] is used to reduce the number of polytopic

vertexes without reducing much accuracy. As the matrix

singular value decomposition (SVD) explores the correla-

tion between the two dimensions of the matrix and decom-

poses the matrix into some orthogonal bases and correspond-

ing singular values, the HOSVD extends this idea to higher

dimensional arrays or tensors, and explores the correlation

between those additional dimensions. In order to apply the

HOSVD to get the LPV model in (3), we first discretize

the parameter space and stack the model on each node in a

Tensor Product (TP) form, then calculate the singular values

through HOSVD. The smaller singular values are discarded

to reduce the number of vertexes.

Firstly, in the range of damage concerned, a grid is gen-

erated for the vector p. Each node of the grid represents a

case of damage. The nonlinear aircraft model is linearized at

each node, leading to the following linearised model,

Si1i2...il =
[
Ai1i2...il Bi1i2...il

]
, (5)

where i1, . . . , il denotes the indices of the nodes in each

dimension of the grid and i1 = {1, . . . , I1}, . . . , il =
{1, . . . , Il}. I1, . . . , Il denote the number of grid points in

each dimension of the grid. Then the resulting model is de-

scribed in a TP form through a n-mode matrix-tensor product

form [13] as

S(p) = S
l⊗

i=1

ωi(p), i ∈ {1, 2, . . . l}, (6)

where S ∈ R
I1×I2×...Il×m×(m+n) is a tensor constructed

from the system matrix (5).
⊗l

i=1 denotes the successive

i-mode matrix-tensor product. ωi(p) ∈ R
Ii denotes the

weight for each model in the ith dimension of the grid. At

last, the HOSVD method is applied to calculate the singular

values of the TP form to simplify the gird. By omitting the

smaller singular values, the number of models and interpo-

lation coefficients can be reduced without losing much accu-

racy as compared with the original one. Using this method,

the TP model can be approximated by

S(p) = S
l⊗

i=1

ωi(p) ≈ S∗
l⊗

i=1

ω∗
i (p), (7)

where S∗ and ω∗
i (p) are the tensor and the weight vector

of the reduced order system respectively, and ω∗
i (p) ∈ R

Ji

with Ji << Ii.

2.3 Simplified Model of the GTM
In this section, we use the above HOSVD method to ob-

tain a simplified model of the GTM.

Assume that the polytopic model of the GTM can be writ-

ten as in (2), where xn � [q p r v α β]T is the

state vector. It can be rewitten as xn = [xT zT ]T , where

x � [q p r]T and z = [v α β]T .

Reformulate the state-space equation as follows[
ẋ
ż

]
=

[
Axx(p) Axz(p)
Azx(p) Azz(p)

] [
x
z

]
+

[
Bx(p)
Bz(p)

]
u

+

[
f0x(p)
f0z(p)

]
. (8)

Note this state-space equation is divided into two parts con-

cerning x and z. Axx(p), Axz(p), Azx(p) and Azz(p) are

the state transition matrixes. Bx(p) and Bz(p) are the input

matrixes. f0x(p) and f0z(p) are offset terms. In this paper,

the angular rate vector x is chosen as the controlled states,

while signal z which is related to angular rates is treated

as measurable disturbances[11]. Finally, the polytopic LPV

model with the angular rates as the state is formed as:

ẋ = Axx(p)x+Axz(p)z+Bx(p)u+ f0x(p). (9)

For the convenience of discussion, (9) is rewritten as

ẋ = A(p)x+H(p)z+B(p)u+ f0(p). (10)

In the following, we consider the left wing tip loss dam-

age of the GTM specifically, i.e. l = 1. A reasonable

range of p ∈ [0, 1/3] is assumed over p, to make sure the

resulting damaged aircraft model is still physically control-

lable. In the range concerned, the damage severity is di-

vided into 10 intervals, then the HOSVD method is used

and the following singular values are obtained [11] as σ =
[166.4366 0.1842 0.0035 0.0034 · · · ].

Retaining the two larger singular values can effectively

reduce the 10 vertexes to a polytopic model with 3 vertexes

as,

S(p) ≈ S∗
1⊗

i=1

ω∗
i (p) =

3∑
i1=1

ω∗
1,i1(p)S

∗
i1 . (11)

Where S∗
i1

is the ith1 vertex of the reduced model. By re-

placing the weight ω of the reduced model with α, the LPV

model can be written as

Δẋ =
3∑

i=1

αi(p)(A
∗
iΔx+H∗

iΔz) +B(p)Δu+ f0(p),

(12)
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where f0(p) is to compensate the deviation caused by the

uncertainties in the operating point and disturbances.

The input matrix B(p), which is assumed fixed in [11],

changes with damage severity as well. Although certain

characteristics of B, like the domination and signs of the

diagonal elements, remain unchanged, we should take the

changes in the elements of B into consideration. From the

control law, the input matrix B(p) should be invertible and

positive definite. To be more realistic, the input matrix B(p)
is approximately expressed as the product of the damage-

free input matrix and a adaptive diagonal matrix Λ.

The damage-free matrix is

B0% =

⎡
⎣ −43.2662 0 0

0 39.5686 11.1409
0 3.2818 −28.5370

⎤
⎦ ,

and the input matrix of the 33% damage severity becomes

B33% =

⎡
⎣ −43.3142 2.6631 −0.0442

0.6455 22.0466 11.3155
0.0211 1.8451 −28.7231

⎤
⎦ ,

By comparing the input matrixes of the damage-free and the

33% damage cases, the each column of B33% is changed to

make it’s diagonal elements equal to those of B0%. Then the

resulting matrix becomes

B33%Λ
−1 =

⎡
⎣ −43.2662 4.7796 −0.0440

0.6448 39.5689 11.2422
0.0211 3.3115 −28.5370

⎤
⎦ ,

and,

Λ−1 =

⎡
⎣ 0.9989 0 0

0 1.7948 0
0 0 0.9935

⎤
⎦ ,

where Λ−1 is a diagonal matrix. It is clear through this col-

umn transformation, the input matrix after the damage oc-

curs can be approximated by the product of the damage-free

input matrix B0% and a diagonal matrix Λ, which is to be

identified on line,i.e.

B(p) ≈ BΛ−1. (13)

For clarity, B0% is written as B. From above, it is sufficient

that the elements of Λ satisfies the following inequality

1/3 ≤ Λii ≤ 2, i ∈ {1, 2, 3}, (14)

to represent all damage cases within the range of p.

The GTM model can then be written as follows,

Δẋ =
3∑

i=1

αi(p)(A
∗
iΔx+H∗

iΔz) +BΛ−1Δu+ f0,

(15)

y = x. (16)

3 The LPV-MRAC Method

3.1 Controller Structure
The proposed LPV-MRAC method is structured as in

Fig. 1.

MRAC Controller Aircraft
r u y

Reference Model
ym

−

Adaptive

Mechanism

e

Θ = [α̂(p) Λ̂(p) f̂0(p)]

LPV Model

Co
{
[A∗

1 H∗
1] . . . [A

∗
k H∗

k] +BΛ−1(p) + f0(p)
}

Fig. 1: Structure of the LPV-MRAC method

In Fig. 1, the controller is designed with state feedback

and feedforward of the reference input r. Parameters, in-

cluding the interpolation coefficients α̂(p), the offset term

f̂0 and the uncertainty of the input matrix Λ̂, are adjusted by

an adaptive mechanism which is driven by the reference in-

put signals and the error between the controlled states and

the reference states. The goal of the controller is to make the

error e to be zero, and keep the desired performance after

damage.

In this paper, the application of polytopic LPV models

can reduce the number of identifying parameters, because

using LPV models only needs identifying interpolation coef-

ficients α, the uncertainty of input matrix Λ and offset terms

f0 instead of identifying all adaptive parameters based on the

states. Polytopic LPV models are good enough to reduce

the computation cost for identifying the damaged model to

improve damaged aircraft’s transient performance. What’s

more, the HOSVD method can be extended to other damage

cases. For example if the case of vertical-tail loss is added to

the original problem, we can cope with it using the HOSVD

method by increasing the dimension of the tensor to get the

polytopic LPV model.

3.2 The LPV-MRAC Design
Fig. 1 adopts a model reference adaptive control structure

with state feedback to recover the control performance and

flight quality after damage. The reference model is as fol-

lows:

ẋm = Amxm +Bmr, (17)

ym = xm, (18)

where the state matrix Am and the input matrix Bm repre-

sent the desired dynamic performance. Since the derivative

of the three angular rates [p q r] can be affected by the

three control surfaces directly, the input matrix B is square

and invertible. In this way, we can rewrite the closed-loop

system model as follows:

ẋ =Amx+BΛ−1
[
u+Λ[B−1(A(p)−Am)x

+B−1H(p)z] +ΛB−1f
]
. (19)

Define μi � [B−1(A∗
i − Am) B−1H∗

i ][x z]T , and

f̄0 � ΛB−1f0, then the closed-loop system model can then
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be reformulated as

ẋ = Amx+BΛ−1[u+Λ
3∑

i=1

αiμi + f̄0]

= Amx+BΛ−1[u+Λ(μ1 +Mᾱ) + f̄0], (20)

where
∑3

i=1 αi(p) = 1, M � [μ2 − μ1 μ3 − μ1], and

ᾱ � [α2 α3].
If all the parameters are known, then the control law

would be (21) in order to match the reference model.

Since the unknown parameters are estimated, the control law

should be formed with the estimated parameters as (22).

u = Λ[B−1Bmr− μ1 −Mᾱ]− f̄0, (21)

u = Λ̂[B−1Bmr− μ1 −Mˆ̄α]− ˆ̄f0, (22)

where ˆ̄α and ˆ̄f0 are the estimations of ᾱ and f̄0 by the adap-

tive laws, respectively. Now given the definition of parame-

ter errors as ˜̄α � ˆ̄α− ᾱ, ˜̄f0 � ˆ̄f0 − f̄0, and Λ̃ � Λ̂−Λ and

by substituting the control law (22) into (20), we have

ẋ =Amx+BΛ−1[Λ̂B−1Bmr− Λ̃(μ1 +Mˆ̄α)− ˆ̄f0]

−BM˜̄α. (23)

The dynamics of the tracking error, which is defined as

e � y − ym = x− xm, can then be formed as,

ė = Ame+Bdiag(B−1Bmr− μ1 −M˜̄α)Λ−1Λ̃d

−BΛ−1̃̄f0 −BM˜̄α, (24)

where λ̃d is a column vector consisting the diagonal ele-

ments of Λ̃.

It is well known that for a given symmetric positive defi-

nite matrix Q, there exists a symmetric positive definite ma-

trix P satisfying AT
mP+PAm+Q = 0. The adaptive laws

for the controller (22) are designed using the Lyapunov sta-

bility criterion [14], and the Lyapunov function is chosen to

be

V (e) = eTPe+λ̃
T

d Γ
−1
v Λ−1λ̃d+̃̄fT0 Γ−1

f Λ−1̃̄f0+˜̄αTΓ−1
α

˜̄α.
(25)

Where Γv , Γf , and Γα are symmetric positive-definite ma-

trices. The derivative of the Lyapunov function V is

V̇ = ėTPe+
˙̃
λd

T

Γ−1
v Λ−1λ̃d +

˙̄̃
f0

T

Γ−1
f Λ−1̃̄f0 +

˙̄̃α
T
Γ−1
α

˜̄α

= −eTQe− 2[eTPBM− ˙̄̃α
T
Γ−1
α ]˜̄α

+ 2[eTPBdiag(B−1Bmr− μ1 −M˜̄α) +
˙̃
λd

T

]Λ−1λ̃d

− 2[eTPB− ˙̄̃
f0Γ

−1
f ]Λ−1̃̄f . (26)

If the adaptive laws are chosen as follows

˙̃
λd = −Γvdiag(B

−1Bmr− μ1 −M˜̄α)(PB)T e

˙̄̃
f0 = Γf (PB)T e (27)

˙̄̃α = ΓαM
T (PB)T e,

then V̇ = −eTQe, namely the derivative of the Lyapunov

function V is negative unless e = 0. The design process of

the control law and adaptive law in this paper is quite similar

to the classical ones using the Lyapunov method. The sta-

bility and asymptotic error convergence can also be proved

using the same procedures. Based on Barbalat’s lemma [15],

the state error e = y−ym goes to zero asymptotically. And

we can also know that the obtained adaptive laws (27) guar-

antee that the error approaches to zero, but it can’t be as-

serted that the parameters,
˙̃
λd,

˙̄̃
f0, and ˙̄̃α, converge to their

true values.

4 Case Study

4.1 Simulation of the LPV-MRAC method
In this section, the proposed LPV-MRAC method is tested

on the GTM simulation model with left wing tip loss dam-

age. The GTM is a 5.5% dynamically scaled twin-turbine

powered aircraft model, and designed and manufactured in

the NASA AvSP program.The simulation model is a non-

linear MATLAB/SIMULINK model which includes several

adverse conditions, such as large angle of attack, coupling

between lateral and longitudinal dynamics, etc.

The design procedure follows from the descriptions in

sections 2 and 3, i.e. 10 damages severities in the left wing

tip damage conditions are used to design the LPV model of

the damaged aircraft, and then the HOSVD method is used

to reduce the number of polytopic vertexes without reduc-

ing much accuracy. Further more, the design of LPV-MRAC

controller and adaptive laws is quite similar to the classical

ones using the Lyapunov method.

Simulation is conducted on the 6DOF nonlinear GTM

model, and the maximum deflecting angles of the control

surfaces are 40 degrees. Before damage, the nonlinear model

is trimmed at the operating point with V = 46.3m/s,

H = 304.8m, α = 4.096rad, and the other states are zero.

Further more, 20% loss of the left wing tip is injected to

the simulated nominal aircraft to validate this direct adaptive

control method.
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Fig. 2: Angular rate responses of the closed-loop system and

the reference model
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The reference input r starts with 0, and at 1s the value

[−1 1 1] is applied. Fig. 2 shows the angular rates track

the reference model’s states perfectly from 0 to 5 seconds. At

5s, abrupt left wing tip damage is injected to the model, then

the angular rates become stable after a transient oscillation

period of about 3 seconds. This benefits from the simple cal-

culation of the polytopic LPV models and the introduction

of the input matrix B’s uncertainty, namely Λ.

From Fig. 3, it can be seen that the control surfaces are not

saturated, so the angular rates of the closed-loop system can

still be controlled from a physics point of view. It can also

be seen that the deflection of the aileron, which is used to

compensate the effect of the wing tip damage, is the largest

of all.

Fig. 4 shows that the interpolation coefficients αi, the ex-

ternal disturbance terms fi adjust rapidly and reach relatively

stable values. The sum of the interpolation coefficients also

satisfies (4). In this paper, uncertainty over the input matrix

is represented by the diagonal matrix Λ, whose values are

shown in Fig. 4. Fig. 4 also shows that the variations of Λii

are within the inequality constraints (14).
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Fig. 4: Adaptive parameters, α, f and Λ

4.2 Simulation with Gaussian Measurement Noise
In this section, white Gaussian measure-

ment noises with zero mean and variance of
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Fig. 5: Commands and angular rate responses under Gaus-

sian measurement noises
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Fig. 6: Control surface deflections under Gaussian measure-

ment noises

[0.1 0.001 0.005 0.01 0.1 0.01 0.005 0.005
0.01 0.01 0.1 0.1] are added to the state variables

to verify the proposed LPV-MRAC method under a more

realistic condition. This variance vector corresponds to a

state sequence of airspeed, angle of attack, pitch rate, pitch

angle, altitude, sideslip angle, roll rate, yaw rate, yaw angle,

roll angle, x location and y location in the aircraft body

coordinate system. Simulation results are shown in Fig. 5 to

Fig. 7.

It can be seen from Fig. 5 to Fig. 7 that the simulation re-

sults under Gaussian measurement noises are similar to those

without measurement noises. Further more, the simulation

results under Gaussian measurement noises demonstrate the

applicability of this proposed LPV-MRAC method.

4.3 Flight Quality Evaluation
In this subsection, the C-star response criterion is used for

flight quality evaluation. C-star response criterion is com-

bination of aircraft’s pitch rate and normal overload formed

as follows C∗ = nz + Vco

g q, where Vco is the cross speed,

whose value commonly used is 122 m/s, nz is the normal

overload, and q represents the pitch rate.
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surement noises
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The C-star controller is a longitudinal controller, so the

output of the C-star controller uc is passed to the first el-

ement in the reference input signals r. A PI controller is

chosen as the outer-loop C-star controller, and its form is

as follows, uc = KP e
∗ + KI

∫
e∗dt. Where KP = 5,

KI = 1, and the error e∗ is defined as the difference between

aircraft’s C-star response and the desired model’s response,

i.e. e∗ = C∗ − C∗
m. The transfer function of the desired

longitudinal model is Gm(s) = 55
s2+13.5s+55 . And C∗

m is the

response of Gm(s) with a unit step input.

In Fig. 8, flight quality evaluation is made after 10 seconds

of damage happens when controller and states are stable af-

ter a transient process. The C-star response is still in Class

I which indicates that the developed LPV-MRAC method is

good enough to compensate the damages in the aircraft struc-

ture and parameters introduced by the damage to keep the

flight quality.

5 Conclusions

Structural damage represents a severe case in which air-

craft flight quality and flight safety deteriorate significantly,

posing challenges to flight control systems design. This pa-

per proposed an LPV-MRAC method with the introduction

of uncertainty of input matrix B. The proposed controller is

validated on the GTM simulation model with left wing tip

loss by simulation. Simulation results show that this devel-

oped LPV-MRAC method can reduce computational cost of

identifying the damaged aircraft model, and recover flight

quality after damage. Further research for improving flight

performance of aircraft with structural damages could be

carried out.
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