




Aircraft Centre-of-Gravity Estimation using Gaussian Process
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Abstract— Aircraft centre of gravity (C.G.) is important for
aircraft safety and performance. This paper proposes the use of
Gaussian process regression (GPR) models for the estimation
of the C.G. location of fixed-wing aircraft. The major benefit of
using a GPR model is that it is a data-based approach explicitly
tackling uncertainties caused by the quality and quantity of the
data as well as sensor measurement noise. The proposed method
consists of two steps: the estimation of the fuel tank’s C.G.
using the GPR model trained with fuel weight property data,
and the computation of aircraft C.G. by the C.G. equation.
A numerical case study of a transport aircraft shows that
the proposed method achieves small mean squared error and
gives good estimate of the aircraft C.G. under simulated flight
scenarios.

Index Terms— Centre-of-Gravity Estimation, Gaussian Pro-
cess, Kriging Interpolation, Aircraft Fuel System, Aircraft
Weight and Balance

I. INTRODUCTION

The location of the centre of gravity (C.G.) is crucial for

the stability and performance of an aircraft. Fuel consump-

tion, fuel transfer, movement or jettison of the payload etc.

could all affect the C.G. location, posing challenges to the

quality and safety of the flight. While the location of the

C.G. cannot be accurately measured, it is thus necessary to

estimate it online, in order to provide information for the

flight control system and flight monitoring procedures.

Conventional approaches to the estimation of the aircraft

C.G. utilises the weight and balance (W&B) data from

different component groups, e.g. the fuselage group, the wing

group, etc.[1]. The C.G. of the aircraft is then determined by

these component groups through the formula of the C.G.

for a collection of point masses. This method is widely

used in industry for different types of aircraft due to its

simplicity and generality. But the accuracy of the method is

restricted by potential noise and errors in the measurement

and computation of the W&B data. And this procedure

is not flexible enough for an in-flight reset to cope with

contingencies such as erroneous measurement of critical

sensors [2], [3].

To overcome the shortcomings of the conventional

method, various in-flight estimation schemes which do not
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rely on the offline W&B data are proposed in literature. [3]

and [4] patented an estimation method of the longitudinal

location of the C.G. for aircraft with adjustable horizontal

stabilisers. The method uses the aircraft structural data,

e.g. location of the focus, the flight data available, e.g.

Mach number, engine speed, and lift coefficient, and the

measurement of the deflection of the horizontal stabiliser

to determine the longitudinal location of the C.G. This

complicated nonlinear mapping is decomposed into simpler

functions, which are constructed by experimental data and

theoretical analysis. [5] proposed to use artificial neural

networks to estimate aircraft longitudinal C.G. locations in

trimmed symmetric flight conditions. The neural network

takes the Mach number, the angle of attack, the flight path

angle, and the elevator deflections as the input and issues the

longitudinal C.G. location and weight as the output. Training

data for the neural network come from simulated flight

tests under ‘a set of weights, longitudinal C.G. positions,

Mach numbers, altitudes, and throttle settings’[5]. These

two methods do not rely on aircraft W&B data, and the

estimation of the C.G. location is computed solely from

the nonlinear mappings obtained beforehand. The accuracy

is improved and the computation can be easily restarted in

flight. However, the use of these methods is mainly restricted

to cruise or trimmed flight due to their underlying principles,

and the methods are also not mature enough for industrial

implementation.

Recently, [6] proposed a combination of the conventional

method and the neural network method in [5]. Estimates from

both methods are passed through a data sorting algorithm,

which selects the appropriate data source given the flight

conditions. The selected estimates are then fed into an

adaptive weighted fusion algorithm to compute the final C.G.

estimate. Both the estimation accuracy and the robustness

against noisy and erroneous data are improved.

In contrast to the methods in [3], [5], and [6], this paper

follows the conventional W&B data-based track and pro-

poses the use of Gaussian process regression (GPR) models,

or Kriging interpolation as called in Geostatistics [7], to

estimate the aircraft C.G. location. Facing the disadvantages

of the conventional approach, e.g. the noise and errors in

the data and sensor measurement, the proposed method

does not aim to overcome this restriction, but rather tries

to incorporate it as uncertainties and give a probabilistic

estimate of the C.G. Furthermore, with the aid of advanced

computing and manufacturing techniques, such as computer-

aided design and computer-aided manufacturing, an accurate

and detailed W&B database of aircraft component groups,

 991

 2016 IEEE/CSAA International Conference on Aircraft Utility Systems (AUS)                            October 10-12,2016     Beijing,China

978-1-5090-1087-5/16/$31.00©2016 IEEE



especially the fuel system, has become more and more viable

[8]. The main contribution of the proposed method is the

application of a data-based probabilistic modelling method

for the estimation of aircraft C.G. location. Within this

method, an approximation is used to improve its real-time

performance. Errors and noise in the data and measurement

are also considered.

The rest of the paper is organised as follows. Section II

summaries the necessary background on Gaussian processes.

Section III then discusses the proposed method on aircraft

centre-of-gravity estimation in detail. Section IV gives a case

study and presents the results. Conclusions and further work

then follow in Section V.

II. BACKGROUND

A. Gaussian Process Regression Models

A nonlinear regression problem can be stated as identify-

ing the input-to-output mapping f(x) of a system

y = f(x) + ε (1)

given input-output data D = {X,y}, ε is a noise term.

A Gaussian process (GP) provides a probabilistic way of

describing such a mapping by defining a distribution over

functions[9]. Similar to a multivariate Gaussian distribution

characterised by a mean vector and a covariance matrix, a

Gaussian process is fully specified by a mean function m(·)
and a covariance function k(·, ·), and is denoted as

f(x) ∼ GP(m(x), k(x,x′)), (2)

where x and x′ are two input points. The mean function

specifies the ‘average shape’ of the function. The covariance

function specifies the covariance between any two function

values, computed from the corresponding inputs.

Given input-output data D = {X,y}, the identified

function, or the posterior GP is written as

f(x) ∼ GP(m+(x), k+(x,x
′)), (3)

where

m+(x) = m(x) + k(x,X)
[
k(X,X) + σ2

ε I
]−1

(y −m(X)) ,
(4a)

k+(x,x
′) = k(x,x′)− k(x,X)

[
k(X,X) + σ2

ε I
]−1

k(X,x′).
(4b)

Then for an input x∗, the corresponding function value has

a Gaussian distribution as

f(x∗) ∼ N (m+(x
∗), k+(x∗,x∗)). (5)

Parameters of the mean function and the covariance function

θ are called the hyper-parameters of the GP. An ‘optimal’

value of the hyper-parameters under data set D is usually

computed by minimising the following negative logarithm

marginal likelihood,

θ̂ ∈ argmin
θ

1

2
yTK−1

θ y +
1

2
log |Kθ|+ 1

2
D log(2π), (6)

where Kθ = k(X,X) + σ2
ε I. This procedure is referred to

as the training of the GP.

B. Computational Complexity Reduction of the GP regres-
sion model

For a GP regression model with N pairs of input-output

training data, the computational complexity of the training

is O(N3), dominated by the matrix inversion in (6). The

computation of f(x∗) in (5) requires O(N2) operations,

mainly on the matrix products in (4a) and (4b). Since the

training of a GP regression model is mostly performed

offline, the O(N3) complexity will not pose difficulties for

online predictions. However, as the size of the training data

increases, even the O(N2) complexity will slow down the

online prediction.

Fully Independent Training Conditional (FITC) approx-

imation to GP in [10] aims to reduce the online pre-

diction complexity by introducing a much smaller set of

M (M < N) pseudo ‘data points’, i.e. pseudo inputs X̄ =
{x1,x2, . . . ,xM} with associated pseudo function values f̄ .

The predicted function output can be computed by the pseudo

inputs X̄ and precomputed covariance matrices between the

data and the pseudo points at a reduced cost of O(M2).
Determination of the locations of the pseudo-inputs X̄ can

be done offline by maximising the likelihood p(y|X, X̄,θ).

C. GP Regression Models with Input Noise

In (5), the test input x∗ has a deterministic value. There

are also cases where the test input is uncertain. For example,

when x∗ comes from a Bayesian filter or a probabilistic

fault identification procedure, a distribution (assumed to

be Gaussian) x∗ ∼ N (μx∗ ,Σx∗) will appear over x∗.

In this case, marginalisation over x∗ should be carried

out to get the distribution of the function output [11], i.e.

p(f∗) =
∫
p(f(x∗)|x∗)p(x∗)dx∗. This marginalisation will

not lead to a Gaussian distribution in general, and Gaussian

approximation through exact moment matching is usually

performed as

μf∗ = Ex∗ [m+(x∗)] , (7)

σ2
f∗ = Ex∗

[
k+(x∗,x∗) +m+(x∗)2

]− μ2
f∗ . (8)

III. AIRCRAFT CENTRE-OF-GRAVITY ESTIMATION

USING GAUSSIAN PROCESS REGRESSION MODELS

A. The Aircraft Centre-of-Gravity Estimation Scheme

Weight and balance data for each component group of an

aircraft, including the weight and the centre of gravity, are

recorded and updated during the design and manufacturing

stage. This W&B data are then used to compute the overall

weight and C.G. of the aircraft. Within all the component

groups, the weight and C.G. of the aircraft’s structural group,

power plant, and systems group rarely change in flight. While

the payload, i.e. the passengers and the cargo, and the fuel

are the two factors causing the C.G. to move in flight, and

the fuel consumption is the dominating factor.

The proposed estimation scheme of the C.G. of an aircraft

is thus decomposed into two steps: the estimation the C.G. of

the fuel tanks and the computation of the aircraft’s C.G. by

the results of the first step and the aircraft zero-fuel weight

and zero-fuel C.G.. A block diagram of this scheme is in Fig.
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1. For the first step, a GP regression model is trained with

the weight property database of the fuel tanks during the

offline training stage. After training, the hyper-parameters

and the pseudo points are used in the GPR model for the

online estimation of the fuel C.G. The second step follows

the conventional approach by using the C.G. equation for the

aircraft C.G. location.

Online Estimation

Offline Training

Flight

Data

GPR

Model

C.G.

Equation

Aircraft

Zero-Fuel

Weight and C.G.

Fuel Weight

and C.G.

Aircraft C.G.

Estimate

Fuel Weight

Property Data

First Step Second Step

Fig. 1: Block diagram of the proposed aircraft C.G. estima-

tion method using GP regression models.

B. Estimating the Centre of Gravity of the Fuel Tanks

1) Weight property database of the fuel tanks: Since fuel

consumption is the major factor causing the weight and C.G.

of the aircraft to change in flight, the analysis of the weight

property of the fuel tanks is essential and is iterated during

the whole span of aircraft design and manufacturing. Analyti-

cal approaches, such as empirical formulae or approximating

the fuel tanks by simple curves, surfaces, and volumes, have

been used in the early years. While with the progress of

computing techniques, especially with the assistance of fuel

tank structural geometry CAD database and finite element

analysis method, refined numerical integration is performed

by slicing the fuel tanks with infinitesimal steps, generating

much more accurate weight property data.

For a specific fuel tank, the weight property database

includes entries of fuel weight, C.G., and moment of inertia

under arbitrary fuel quantity and fuel surface angle. The

fuel surface angle is further affected by the attitude and the

acceleration of the aircraft. Each entry is computed under

a specific combination of aircraft attitude, acceleration, and

fuel quantity. The span of the combination needs to cover all

possible values of the flight parameters and the fuel quantity.

2) GP regression model for the fuel tanks database: The

fuel weight property database describes a nonlinear mapping

for each fuel tank as

y = f(x), (9)

where the input x ∈ R
D is a column vector, containing

the attitude and the three-axis acceleration of the aircraft as

well as the fuel quantity in the tank. The output variable

y ∈ R
E consists the three-axis C.G. of the fuel tank with

respect to a certain reference point. As described in section

II, a Gaussian process model could be used to describe this

nonlinear mapping. i.e.

fi ∈ GP(m(x), k(x,x′)), i ∈ {1, . . . , E}, (10)

where m(x) = c is chosen as a constant function, in which

the constant c is the hyper-parameter. k(x,x′) is chosen to

be the squared-exponential covariance function

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)�Λ−1(x− x′)

)
, (11)

where Λ is a diagonal matrix. The diagonal elements of

Λ and σf are the hyper-parameters. The combination of a

constant mean function and (11) makes the GPR model a

universal approximator to smooth nonlinear functions.
Since the weight property data from numerical compu-

tation do not have measurement noise, there is no need

for a noise term in (9). In case there are data from sensor

measurement, a noise term could be appended to (9) and a

Gaussian likelihood function can be used accordingly, with

the variance term as an additional hyper-parameter.
Then the GPR model in (10) can be trained by the weight

property data as through (6), in order to find an optimal value

for the hyper-parameters.
3) Reducing the computational load: The weight property

database usually contains tens of thousands of records, and

online prediction using a GPR model over such a database

involves significant computational load. FITC approximation

technique is used in the proposed scheme, in order to meet

the high real-time demands of C.G. estimation. Using FITC

approximation means that in the offline training stage, after

the hyper-parameters are optimised, the pseudo inputs are

also computed and passed to the GPR model for online

estimation.
4) Interfacing with noisy and erroneous input: For the

estimation of the fuel tanks’ C.G. location, input variables

to the nonlinear function f(x) include aircraft attitude, ac-

celeration, and the fuel quantity, whose measurement may

suffer from noise or errors. A Bayesian filter or a fault

identification filter could be devised in such situations to

provide a probabilistic reconstruction of the faulty or noisy

variables, given measurement of other variables and the flight

dynamics of the aircraft. The proposed C.G. estimate method

does not include such a filter but provides an interface for

it through input distributions. This interface accounts the

mean of the input variable as well as the variance, which

is an indication of the quality of the input. The resulting

C.G. estimate is certainly not perfect, but a more informative

estimate is provided. Incorporating the variance of the input

variables requires the techniques in section II.C, and the

computation is carried out online.

C. Estimating the Centre of Gravity of the Aircraft
After obtaining the C.G. estimate and the weight of the

fuel tanks, computing the C.G. of the aircraft is straightfor-

ward. By defining a common reference point for all the fuel

tanks and the zero-fuel aircraft, the C.G. of the aircraft is

computed as

xa =

∑n
i=1 mixi +mZFxZF∑n

i=1 mi +mZF
, (12)

where n is the number of fuel tanks, xi and mi are the

C.G and weight of the ith fuel tank respectively. xi ∼
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N (μxi
,Σxi

) is a vector of Gaussian random variables. mZF

and xZF are the weight and the C.G. of the zero-fuel aircraft,

respectively.

Since linear combinations of independent Gaussian ran-

dom variables is also a Gaussian random variable, the distri-

bution of the aircraft C.G. location is xa ∼ N (μxa
,Σxa),

where

μxa
=

∑n
i=1 miμxi

+mZFxZF∑n
i=1 mi +mZF

, (13)

Σxa =

∑n
i=1 m

2
iΣxi

(
∑n

i=1 mi +mZF)
2 . (14)

IV. CASE STUDY: CENTRE-OF-GRAVITY ESTIMATION OF

A TRANSPORT AIRCRAFT

In this section, a case study of the proposed C.G. estima-

tion method is carried out on a transportation aircraft. The

layout of the aircraft’s fuel tanks is in Fig. 2.

Centre

tank
Left inner

tank

Right

inner tank

Left outer

tank

Right

outer tank

Fig. 2: Layout of the fuel tanks.

There are five tanks in total: one centre tank within the

fuselage, and four wing tanks. The fuel weight property data

has 5 tables, each containing 10,759 rows of scattered data

points over irregular grids. Fig. 3 shows how the 10,759 data

points of the centre tank are scattered.

−0.1
0

0.1

012345

·104
0

1

2

3

4

5

Acceleration x [m/s2]
Fuel Quantity [kg]

C
.G

.
L

o
ca

ti
o
n

x
[m

]

Fig. 3: Scatter plot the the data points in the fuel weight

property data of the centre tank.

In accordance with the two steps in the proposed method,

the case study first inspects the estimation of the C.G. of

the fuel tanks, then proceeds to the estimation of the aircraft

C.G. by flight simulations.

A. Estimating the C.G. of the Fuel Tanks

The data for each fuel tank are split evenly into 80%

training data and 20% test data. For each fuel tank, 3 GPR

models are trained, corresponding to the three-axis C.G.

locations.

The computation was carried out on a laptop with a 2.9

GHz Intel Core i5 processor and 4 GB of memory. For the

GP regression model, the GPML toolbox [9] was used. The

training of the GP uses a conjugate gradient method with 100

iterations. Fig. 4 shows the negative log-marginal likelihood

(NLML) of the GPR models for the longitudinal C.G. of the

five fuel tanks when the hyper-parameters are trained.

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6
·104

Iteration

N
L

M
L

Centre

Left inner

Left outer

Right inner

Right outer

Fig. 4: Negative log-marginal likelihood of the GPR models

for the longitudinal C.G. during the offline training operation.

For the FITC approximation, the pseudo points are not

computed through optimisation due to a prohibitively large

number of decision variables: the number of decision vari-

ables is 4 times of the number of pseudo points. Instead,

analysis of the data shows relatively dense grid points along

the fuel quantity input, thus 5 equally-spaced pseudo points

are used to replace the original 24 data points for each

combination of the other inputs. This gives 1,851 pseudo

points for the GPR model with reasonably small NLML.

Since most curve-fitting and interpolation methods use

the mean squared error (MSE) as an index for the fitting

performance. The values of NLML do not translate directly

into MSE, but an MSE between the predicted mean values of

the GPR model and the actual data output values can still be

computed. Table I lists the average computational cost and

the MSE of the GPR model for the longitudinal C.G. of the

left inner tank.

TABLE I: Time consumption and fitting performance of the

GPR model for the longitudinal C.G. of the left inner tank.

Item Value
Average time for training the hyper-parameters 7223 s
Average time of GPR prediction without FITC 9.7 s
Average time of GPR prediction with FITC 3.8 s
MSE of the training data set without FITC 5.8e-3
MSE of the test data set without FITC 1.4e-2
MSE of the training data set with FITC 2.6e-2
MSE of the test data set with FITC 3.9e-2

It can be seen from Table I that the training of the GPR

model is the most time-consuming operation, which takes

about 5 hours in total. But this 5 hours is spent offline

and could be reduced if more powerful computers are used.

For the prediction part, the full GPR model takes about 9.7
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seconds to give a single estimate. In contrast, with FITC

approximation, the time for a single prediction is reduced to

less than a half, i.e. about 3.7 seconds. Also, the MSEs of the

GPR models on both the training data set and the test data

set are at a relatively low level, indicating a good regression

performance.

B. Estimating the C.G. of the Aircraft

After the GPR models for the fuel tanks have been trained,

the C.G. of the whole aircraft can be computed. Two flight

simulations are carried out in this part, including decelerated

level flight and cruise flight. The first scenario is to test the

C.G. estimation with respect to an acceleration input while

the second to a fuel quantity input.

1) Decelerated Level Flight: This flight scenario is ini-

tiated by a step input to the throttle lever for 20 seconds

corresponding to -0.2 g deceleration. The acceleration input

has a Gaussian distribution to account for the Gaussian mea-

surement noise. The estimate of the aircraft C.G. variation

from the proposed method is shown in Fig. 5. The shaded

band in the figure shows the 95% confidence interval. Since

the true values of the C.G. locations are unavailable, results

from a 1-D spline interpolation using the local data are used

as a reference.
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Fig. 5: Estimate of the aircraft longitudinal C.G. variation

during level deceleration flight.

It can be seen that the results between the GPR model

and the 1-D spline interpolation are pretty close, and the

GPR model with FITC approximation gives almost exactly

the same results as the full GPR model, with slightly larger

uncertainties. Furthermore, the estimate of the GPR model-

based method shows significant uncertainties during the first

half of the simulation. This is an indication that the mean

value from the GPR model needs to be used with caution,

since the uncertainty may come from lack of data, low

quality of the data available, measurement noises, or even

data errors. For this simulation, the uncertainty comes from

both the lack of data and measurement noise.

2) Cruise Flight: This scenario lasts for 90 minutes, dur-

ing which fuel consumption causes the C.G. of the aircraft to

shift. The fuel quantity input also has a Gaussian distribution.

Simulation results are shown in Fig. 6 and all the results are

almost the same.
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Fig. 6: Estimate of the aircraft longitudinal C.G. variation

during cruise flight.

V. CONCLUSIONS AND FURTHER RESEARCH

This paper presents an estimation method for aircraft

centre of gravity based on Gaussian process regression

models. The proposed method is capable of incorporating

uncertainties and provide a probabilistic estimate of the C.G.

Numerical examples on a transport aircraft show that the

method has small mean squared errors and provides good

estimate of the C.G. with additional uncertainty information.

Due to restrictions on the data available, the performance

of the proposed method is not extensively investigated.

Detailed tests and validation of the method are to be done

on a more complete fuel weight property database.
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