




Online Learning and Inference Based Flight Envelope Estimation for
Aircraft Loss-of-Control Prevention

Hang Zhou, Lingyu Yang, Jing Zhang, and Xiaoke Yang

Abstract— Aircraft loss-of-control (LOC) is the major con-
tributing factor to fatal accidents and is characterised by the
manoeuvring of aircraft beyond the allowable flight envelopes.
This paper proposes an online learning and inference based
method for aircraft flight envelope estimation in order to
prevent aircraft LOC. The lift and drag coefficients of the
aircraft are identified online using an extended Kalman filter
and the aircraft flight dynamics. A Gaussian process regression
model then learns and infers the up-to-date form of the lift curve
from both prior knowledge and the identification data. The
extremum of the inferred lift curve, including the maximum lift
coefficient and the critical angle of attack are used to compute
the flight envelope estimate of the aircraft. Numerical simulation
on the NASA generic transportation model (GTM) shows that
the proposed method can effectively estimate the aircraft lift
and drag coefficients, and by using the extremum on the up-
to-date lift curve inferred, return the flight envelope under a
wingtip impairment condition.

Index Terms— loss of control, flight envelope estimation,
Gaussian process regression, extended Kalman filter, Generic
Transportation Model

I. INTRODUCTION

With advanced instrumentation, the fly-by-wire (FBW)
control system, and various fault-tolerant design, the proba-
bility of flight accidents on modern aircraft has been signif-
icantly reduced. Yet modern aircraft are still not immune to
accidents or incidents, as summarised by the Boeing com-
pany in the survey of commercial jet airplane accidents these
years[1]. Despite various causes, such as mechanical failure,
“spatial disorientation”, “undetected loss of airspeed”[2],
etc., flight accident, especially fatal ones, are mostly a direct
consequence of loss-of-control (LOC). LOC has been the
major contributing factor to fatal accidents, among others like
controlled flight into terrain and runway excursion, etc.[3].

LOC refers to the manoeuvring of the aircraft beyond its
allowable normal flight envelopes, including the angle of
attack and the sideslip angle, the attitude, and the airspeed,
etc., which may lead to nonlinearity in the aerodynamics and
flight dynamics, or cause problems to the aircraft structural
integrity[4]. Untended development of LOC will further
cause the aircraft to rapidly enter into stall or spin. Due to
the critical position of the flight envelope to LOC, the FBW
system on modern aircraft has been designed with various
protection functionalities, such as the angle of attack and
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bank angle protections on Airbus aircraft[5], to suppress the
control inputs which may push the aircraft out of the normal
operating envelope. In spite of the success of these efforts,
aircraft are still susceptible to various unusual situations,
such as the failure of control surfaces, damage to the aircraft
structure, adverse weather conditions, etc., in which either
the force and torque generating capability of the control
surfaces decreases, or the aerodynamics and flight dynamics
the whole aircraft changes. The normal safe flight envelope
in these situations may be compromised, with unachievable
and possibly LOC-inducing regions.

As the flight envelope protection functionality restrains the
control inputs, a supervision procedure is desirable for the
envelope itself. This procedure monitors abnormal situations
or unusual changes in aircraft characteristics, and adaptively
updates the envelope protection boundary. The core to such
a procedure is the estimation of the envelop, and research
effort on this topic is summarised briefly as follows.

Reference [6] presents an extensive coverage of an adap-
tive flight envelope estimation and protection method for
aircraft with both actuator faults and structural damages.
The actuator faults are identified by a bank of nonlinear
fault detection and isolation filters, while changes in air-
craft aerodynamic coefficients due to damage conditions
are modelled by unknown additive terms and identified
with a linear regression method. The envelope protection is
achieved through the inverse of an artificial neural networks
model of the aircraft dynamics for command margins against
the limits.

Reference [7] proposes an upset detection and physical
modelling based flight envelope estimation method as an
outer “supervisory” loop for the existing envelope limiting
control systems. The impact of degradation, including stall
characteristics and lifting surface damage effects, on the
overall aircraft performance and operational limits is de-
termined offline using an analytical approach incorporating
aircraft geometric parameters and sectional aerodynamic
data. The integration of these two blocks leads to the final
onboard envelope determination function.

Reference [8] covers an in-depth investigation of the
envelope estimation problem for impaired aircraft. Detailed
a priori modelling and analysis of the inertial, structural,
and aerodynamics characteristics of the impaired aircraft
is discussed, leading to a parameterised representation of
the damages. An extended Kalman filter combined with
a differential vortex lattice method is then proposed for
the estimation of the impairment parameters. The estimated
parameters are used to infer the damage conditions, upon
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which the stall angle of attack is obtained via local strip
lift coefficient analysis. The aircraft performance envelope is
then computed as functions of the maximum angle of attack.

References [9], [10], and [11] propose a reachability-
analysis-based method for aircraft manoeuvring envelope es-
timation. Dynamics of the unknown aerodynamic parameters
(random walk) is augmented into the aircraft longitudinal
manoeuvring model. A maximum a posteriori estimator is
used to estimate the parameters, upon which the aircraft trim
envelope is obtained on a grid of state values. The aircraft
manoeuvring envelope is then computed via a bi-directional
reachability analysis from the trim envelope using an optimal
control formulation.

In this paper, a novel online learning-based flight enve-
lope estimation approach is proposed. The overall structure
of the proposed approach is similar to most references,
containing a parameter identification procedure combined
with an envelope determination one. Unlike [7] and [8],
in which parameterised faults or performance degradation
parameters are identified, our proposed method identifies
the aerodynamic coefficients directly, which is similar to
reference [11]. The method of estimating the flight envelope
in this paper is novel and distinct from existing literature,
in that a Gaussian process (GP) regression model is utilised
to represent the lift coefficient curve. The GP model is a
probabilistic function approximator, which effectively fuses
prior knowledge and the identified parameters data in a
Bayesian way, giving an estimate of the whole lift curve. The
flight envelope is then computed from the extremum of the
estimated lift curve. This procedure draws inspiration from
[6], [7], and [8], in which other ways of integrating prior
knowledge, or offline analysis with online identification are
discussed. The merit of the GP regression model lies in its
flexibility and learning capability. The flexibility allows it to
accept various types of prior knowledge, and the learning
capability to learn from online identified data.

The rest of this paper is organised as follows. Section
II reviews some of the preliminary background knowledge.
Section III covers the main method, including the parameter
identification and the GP regression model-based envelope
estimation methods. A case study on the NASA generic
transportation model (GTM) is analysed in section IV, fol-
lowed by conclusions and further work in section V.

II. BACKGROUND KNOWLEDGE

A. Aircraft Aerodynamics and Flight Dynamics
Flight dynamics of a fixed-wing aircraft is usually de-

scribed by a 6 degree-of-freedom rigid body equations of
motion. Due to the symmetry of the aircraft geometry, under
level and zero sideslip flight condition, the longitudinal and
lateral motions can be decoupled. Dynamics of two selected
longitudinal variables, the true airspeed V and the angle of
attack (AoA) α, is

V̇ =
T

m
cosα− D

m
− g sin(θ − α), (1a)

α̇ = − T

mV
sinα− L

mV
+ q +

g

V
cos(θ − α), (1b)

where m is the mass of the aircraft, g is the gravitational
acceleration, θ is the pitch angle, q is the pitch rate, and T
is the engine thrust. The two aerodynamic forces, lift L and
drag D can be further written as

L =
1

2
ρV 2SCL, (2a)

D =
1

2
ρV 2SCD, (2b)

where CL and CD are the lift coefficient and drag coefficient,
respectively, and S is the reference area.

B. Gaussian Process Regression Model

A Gaussian process (GP) defines a distribution over
functions[13]. By providing a probabilistic description of a
function y = f(x) : Rn 7→ R, a GP can inherently perform
nonlinear regression through Bayes rule and input-output
data. A Gaussian process regression model for function f(x)
is usually denoted as

f(x) ∼ GP(m(x), k(x,x′)), (3)

where m(x) is the mean function, and k(x,x′) is the
covariance function with x, x′ ∈ Rn being two input
points. The mean function depicts the ‘average shape’ of the
function, while the covariance function reflects the ‘variance’
by specifying the covariance between two points on the
function computed from the inputs.

Given an input-output data set D = {X,y}, the regression
result, or the posterior GP, is

f(x) ∼ GP(m+(x), k+(x,x′)), (4)

where

m+(x) = m(x) + k(x,X)k(X,X)−1 (y −m(X)) , (5a)

k+(x,x′) = k(x,x′)− k(x,X)k(X,X)−1k(X,x′). (5b)

Parameters θ in the mean and the covariance functions are
called the hyper-parameters of the GP, and is usually trained
by minimising the negative logarithm marginal likelihood
− log p(y|X), i.e.

θ̂ ∈ arg min
θ

1

2
(y −mθ)>K−1θ (y −mθ) (6)

+
1

2
log |Kθ|+

1

2
n log(2π),

where Kθ = k(X,X), mθ = m(X).

III. LEARNING AND INFERENCE BASED FLIGHT
ENVELOPE ESTIMATION

As stated in the introduction, the main prologue to aircraft
LOC is the deviation of its states beyond the safe flight
envelope. Existing envelope protections in the FBW control
system is based on the normal aircraft characteristics, which
may well have been changed in LOC-prone adverse con-
ditions, such as icing and structural damages. An adaptive
online envelope estimation procedure is thus desirable, in
order to provide an up-to-date estimate of the envelope
boundaries.
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In this section, the proposed learning-based flight envelope
estimation scheme is discussed in detail. As shown in the
block diagram in Fig. 1, the proposed scheme consists of
an extended Kalman filter (EKF), an online learning and
inference block with a Gaussian process regression (GPR)
model, and a flight envelope computation block. The EKF
takes flight parameters from the aircraft and produces an
estimate of the current lift coefficient. The online learning
and inference block collects the lift coefficient estimate
and fuses the data with prior knowledge through a GPR
model, generating an approximation of the lift curve. The
maximum lift coefficient on the curve is then used for the
flight envelope computation, results of which can be shown
in the primary flight display as an assistance to the pilot.

Aircraft

Extended
Kalman Filter

Online Inference

Data
Collection GPR Model

Prior
Knowledge

Flight Envelope
Computation

Primary
Flight Display

Online Learning

Fig. 1: Block diagram of the proposed online learning and
inference based flight envelope estimation method.

A. Aircraft Aerodynamic Coefficients Estimation

In Section II-A, dynamics of the aircraft true airspeed
V and the angle of attack α are listed in (1a) and (1b),
coupled with the lift coefficient CL and the drag coefficient
CD. In order to estimate these coefficients, a random walk
assumption is put over their dynamics, i.e.

ĊD = wCD
, (7a)

ĊL = wCL
, (7b)

where wCL
and wCD

are two zero-mean Gaussian random
variables. (7a) and (7b) are then appended to the longitudinal
dynamics (1a) and (1b), forming an augmented system in a
compact form as

ẋ = f(x,u) + w, (8a)
z = h(x) + v = Hx + v, (8b)

where the state x =
[
V α CD CL

]>
, the output

z =
[
V α

]>
. A virtual or exogenous input is defined

as u =
[
T θ q

]>
. w ∼ N (0,Q) is the process noise,

v ∼ N (0,R) is the measurement noise. The output function
h(x) is linear with an output matrix of

H =

[
1 0 0 0
0 1 0 0

]
. (9)

Due to the nonlinearity of function f in x, an extended
Kalman filter is needed for the estimation of the augmented
state. Linearisation of f with respect to x gives

∂f(x,u)

∂x
= F(x,u). (10)

Furthermore, the continuous-time dynamics of the aug-
mented system is discretised, and a first-order approximation
of the zero-order hold (ZOH) method gives

fd(xk,uk) = xk + f(xk,uk)Ts, (11a)
Fd(xk,uk) = I + F(xk,uk)Ts, (11b)

Qd = QTs, (11c)

where k is the time step, and Ts is the sampling period.
The EKF then follows the classic prediction-update mech-

anism, with prediction equations as

x̂−k = fd(x̂k−1,uk−1), (12a)

P̂−k = Fd(x̂k−1,uk−1)P̂k−1Fd(x̂k−1,uk−1)> + Qd,
(12b)

and update equations as

Kk = P̂−k H
>(HP̂−k H

> + R)−1, (13a)

x̂k = x̂−k + Kk(zk −Hx̂−k ), (13b)

P̂k = (I−KkH)P̂−k . (13c)

The estimated lift and drag coefficients are embedded in x̂k.

B. Aircraft Lift Curve Estimation

Since the flight envelope parameters discussed later only
depends on the aircraft lift characteristics, the estimated drag
coefficient is not used and only the lift curve estimation is
discussed in this part.

1) GPR Model of the Lift Curve: Aircraft lift curve (as
shown in Fig. 2) is a plot of the lift coefficient CL against the
angle of attack α. Describing a nonlinear mapping from α
to CL, the lift curve can be readily modelled by a Gaussian
process as CL(α) ∼ GP(m(α), k(α, α′)).

A variety of mean functions can be used in a GP, such
as the zero or the linear mean functions, depending on the
prior information to be incorporated. For CL(α), the mean
function is chosen to be

m(α) = chCLm(α+ ah) + bh, (14)

where ah, bh, and ch are the hyper-parameters, CLm(α) is a
function describing the a priori shape of the lift curve. Fig.
2 depicts the physical meanings of these variables.

α0 0 αcr

1

CLmax CLm(α)

m(α)

ah

ch

−bh

α

CL

Fig. 2: The mean function of the GPR model CL(α) and the
meaning of its hyper-parameters.
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In Fig. 2, CLm(α) has the shape of a typical lift curve,
with a linear section at small angles of attack, and an
extremum corresponding to the maximum lift coefficient
CLmax and the critical or stall angle of attack αcr. In
practice, CLm(α) can be chosen as the lift curve of the
nominal aircraft obtained from wind tunnel experiments. ah
is a horizontal shift parameter, accounting for changes in
the critical angle of attack. ch is a scaling factor adjusting
the whole lift curve proportionally, while leaving the zero
lift angle of attack α0 unaffected. bh is a vertical shift
parameter describing additive changes in the lift coefficient.
The combination effects of the hyper-parameters ah, bh, and
ch are depicted in Fig. 2, which shows both decreased lift
coefficients and a reduced stall angle of attack in m(α) as
compared with the nominal curve CLm(α).

Difference between the actual lift curve and the mean
function is accounted for by the covariance function of
the GPR model. The following sum of a exponentiated
quadratic function and an additive noise term is chosen as
the covariance function for CL(α), i.e.

k(α, α′) = σf exp

[
− (α− α′)2

2λ2

]
+ σ2

n, (15)

where λ, σf , and σn are the hyper-parameters, representing
the input length scale, the ‘size’ of the difference, and the
‘size’ of the noise, respectively. This covariance function
is capable of describing any smooth function with additive
Gaussian noises.

2) Online Learning: By fixing the mean and the covari-
ance functions, prior knowledge has been incorporated into
the GPR model. But the hyper-parameters in those functions
still need to be determined, in order to effectively fit the
model to the data obtained. For the GPR model of CL(α),
the data comes from the estimated lift coefficient by the EKF.
The learning of the hyper-parameters are preformed by eq.
(6) through a nonlinear optimisation procedure, and is carried
out online when there is new data available.

3) Online Inference: After the data are stored and the
hyper-parameters learned, the GPR model provides an op-
timal fusion of the prior knowledge and the current data
available. A probabilistic approximation of the current lift
curve containing both the mean and the variance can then be
inferred from the model by eq. (5a) and (5b). The extremum
of the curve can thus be determined, including the critical
angle of attack αcr and the maximum lift coefficient CLmax.

4) Example: Aircraft Icing: In this part, the GPR model-
based lift curve estimation method is tested specifically on
an aircraft icing condition. Icing refers to the formation of
various types of ice on aircraft’s surfaces, e.g. the wing
and the control effectors. Icing distorts the airflow over
the surfaces, decreasing the aircraft’s lift and reducing its
stall angle of attack. This example uses the icing data from
reference [14]. The lift curves of the nominal clean aircraft
together with that of an icing condition are reproduced in
Fig. 3.

A GPR model for the lift curve as described above is
constructed. The lift curve in clean condition serves as the
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Fig. 3: Lift curves in clean and icing conditions reproduced
from reference [14].

CLm(α) term in the mean function of the GP, with the data
point at 14 degrees of AoA removed for the convenience of
computing the extremum, as shown in Fig. 4. For the online
learning of the hyper-parameters, the upper and lower bounds
as listed in Table I are applied. Note that bh = 0 is used in the
table since we found that by setting it to be 0, various local
optima were avoided and the optimisation performance was
improved. Synthetic data are generated by resampling of the
spline-interpolated lift curve in icing condition with additive
zero-mean Gaussian noises. The variance of the noise is
0.015. Four data sets are tested, with the range of AoA as
[0, 3], [0, 6], [0, 9], [0, 11] degrees, respectively.

The mean of the lift curve inferred by the GPR model on
these four data sets are shown in Fig. 4, and the correspond-
ing learned hyper-parameters are listed in Table I.
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m(α) Data 1, α ∈ [0, 3]

m(α) Data 2, α ∈ [0, 6]

m(α) Data 3, α ∈ [0, 9]

m(α) Data 4, α ∈ [0, 11]

Fig. 4: Lift curves in icing condition as inferred by the
GPR model from four sets of icing data. The curves are
represented by thin green lines, with deeper colour indicating
more data points used.

In Fig. 4, it can be seen that on data set 1, not much
difference could be told between the lift curves of clean and
icing conditions when the AoA is in between 0 and 3 degrees.
The inference of the GPR model lies in line with the clean
condition, having slight differences. On data set 2, when the
data covers up to 6 degrees of AoA, difference between the
lift curves of the two conditions can already be observed.
The inferred curve deviates from the prior and approaches
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TABLE I: Bounds on the hyper-parameters and the learned
values from the four data sets.

Item ah bh ch λ σf σn
L. Bound 0 0 0.1 10 0.1 1e-4
U. Bound 10 0 1 100 1 0.1

Data 1 0 0 1 100 0.1 0.018
Data 2 0.7 0 0.8 10 0.1 0.018
Data 3 0.6 0 0.7 10 0.2 0.016
Data 4 0.6 0 0.5 10 0.4 0.016

to the one in icing condition. On data sets 3 and 4, as the
data reach larger ranges of AoA, the inferred lift curves get
closer to the true one in icing condition.

From Table I, firstly it can be seen from the last column
that noise in the data is effectively captured by the hyper-
parameter σn with a value close to 0.015. The values of the
hyper-parameters of the mean function indicate that the curve
in icing condition is a combination of horizontal shift and
proportionally scaling of the clean lift curve.

Fig. 5 and 6 show the estimate of the maximum lift
coefficient and the critical AoA from the inferred lift curves
on the four data sets. It can also be seen that as more data
are obtained, the estimate get closer to the actual extremum.
The critical AoA is also estimated before the aircraft stalls.

1 2 3 4
0.9

1

1.1

1.2

1.3

Data set number

C
L
m
a
x

Fig. 5: Estimate of the maximum lift coefficient in icing
condition by the GPR model on the four data sets. The true
value is around 0.9.
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Fig. 6: Estimate of the critical AoA in icing condition by the
GPR model on the four data sets. The true value is around
11 degrees.

5) Discussion on the Flexibility of the GPR Model:
Since the learning and inference capability of the GPR
model derives from Bayes law, it naturally incorporates prior
information and data. The flexibility of such a lift curve
estimate method lies in both the form of the prior and the

data. For instance, the nominal lift curve can be chosen as the
prior as in the example above. But if there are other offline
analysis or experiment results on the lift curves of various
situations, the prior of the GP could be readily changed to
any of them, and the switching of the prior can be triggered
by a signal from an online fault diagnosis procedure or from
sensor measurements. The prior gives the GPR model a
starting point and a suitable one could save data acquisition
and learning time. Further flexibility comes from the data.
By leaving open the source of the data, the GPR model also
accepts data of direct measurement or other estimators, not
necessarily estimate from an EKF as in the proposed scheme.

C. Aircraft Flight Envelope Computation

Based on the maximum lift coefficient CLmax and the
critical angle of attack αcr estimate returned by the GPR
model, onboard computation of the flight envelope can be
conducted, including bounds for the minimum calibrated
airspeed VCASmin

, the maximum load factor nzmax
, and the

maximum bank angle φmax, as suggested by reference [15].
The minimum calibrated airspeed VCASmin

is given by

VCASmin =

√
2nzW

CLmax
ρ0S

, (16)

where ρ0 is the air density at sea level, W is the weight of
the aircraft, nz is the load factor.

The maximum load factor nzmax
is calculated by

∆nzmax
=
ρV 2SCLmax

2W
cosφ− nY sinφ (17)

− cos γ +
T

W
sinα cosφ,

where φ is the bank angle, nY is the lateral load factor, and
γ is flight path angle.

The maximum bank or roll angle is

φmax = ± arccos

(
m(g cos γ + V γ̇)

T sinα+ 1
2ρV

2SCLmax

)
(18)

where m is the aircraft mass, and γ̇ is the time derivative of
the flight path angle.

IV. CASE STUDY: THE IMPAIRED AIRCRAFT

A. Impaired Aircraft and Lift Coefficient Analysis

In this section, the proposed flight envelope estimation
method is investigated with a case study on a nonlinear
simulation model of an impaired aircraft, the generic trans-
portation model (GTM) from NASA[16].

The GTM includes 6 damage conditions, among which
two involve noticeable changes in the lift characteristics,
namely the left wingtip off and the left stabiliser off con-
ditions. The left wingtip off damage is selected for this case
study due to the intactness the pitch control surfaces. The
lift curves of the nominal and the damaged aircraft in this
condition are plotted in Fig. 7.

It can be seen that both lift curves are linear at small
AoA, and nonlinearity starts to appear when the AoA goes
beyond 10 degrees. The GTM itself is capable of simulating
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Fig. 7: Aircraft lift curves in nominal and left wingtip off
damage conditions.

aircraft stall and post-stall characteristics, while for envelope
estimation and protection, our aim is to prevent the aircraft
from entering the nonlinear region for increased difficulties
in control. Thus, the lift coefficient at 11 degrees of AoA is
considered the ‘maximum’ lift coefficient, rather than the one
at around 35 degrees. A GPR model is constructed for the
lift curve. The CLm(α) function as shown in Fig. 7 is used
in the mean function to serve as the prior information. For
the convenience of computing the extremum, the CLm(α)
function follows the nominal lift curve in the linear section
and goes down right after the critical angle of attack.

B. Simulation Scenario

In the case study, a 20-second simulation is carried out.
The aircraft starts from a trimmed straight and level flight at
800 feet of altitude and 95 knots of equivalent airspeed. In
order to obtain data for a range of AoA, a sinusoidal com-
mand is issued to the elevator. A preliminary roll controller
was adopted to keep the aircraft at roughly level flight. The
aircraft is in nominal condition for the first 10 seconds of
the simulation, and suffers from left wingtip off damage for
the next 10 seconds.

The time history of the elevator deflections and the AoA is
shown in Fig. 8. Changes can be clearly seen at 10 seconds
in Fig. 8b, reflecting the damage effects.

C. Simulation Result

The estimation of the lift and drag coefficients from the
EKF, together with the true values, are shown in Fig. 9. It can
be seen that the EKF accurately estimates both derivatives.

The critical angle of attack αcr and the maximum lift
coefficient CLmax computed from the GPR model of the lift
curve are shown in Fig. 10. The learning and inference of
the model take place every one second. It can be seen from
Fig.10a that the estimate of the critical AoA wiggles around
10 degrees, which is 1 degree less than than the true value.
The estimated maximum lift coefficients as shown in Fig. 10b
are also close to the true values, with an apparent decrease
after the wingtip damage at 10 seconds. The estimate gets
closer to the true values as more data are obtained.
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Fig. 8: Aircraft elevator deflections and angle of attack in
the simulation.
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Fig. 9: Lift and drag coefficients estimate from the EKF,
along with the true values.

The flight envelope estimation by the proposed method is
shown in Fig. 11, along with the true values computed from
the actual maximum lift coefficients. Despite some errors, it
can also be seen that estimated envelopes are close to the true
ones, indicating the effectiveness of the proposed method.

V. CONCLUSIONS

This paper investigates an online learning and inference
based flight envelope estimation method. A Gaussian process
regression model learns the up-to-date shape of the lift curve
from both prior information and the lift coefficient data
identified by an extended Kalman filter. The extremum of
the learned lift curve is used to compute the flight envelope.
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Fig. 10: Critical AoA and maximum lift coefficient estimate
from the GPR model of the lift curve, with a 1-second update
interval.
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(a) Minimum calibrated airspeed envelope estimate
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(b) Maximum load factor envelope estimate
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Fig. 11: Flight envelope estimate by the proposed method,
with a 1-second update interval.

Numerical examples on aircraft icing and impairment condi-
tions show that the GPR model effectively learns and infers
the up-to-date shape of the lift curve, and the learning is more

effective as more scattered data are available. Estimation of
the flight envelope is further successfully validated under the
NASA GTM wingtip loss damage condition.

While there is still research to be done, including the
estimation of the flight path angle and pitch attitude en-
velopes using the drag coefficients as mentioned in reference
[15], the effect of control surface damages or failures on the
achievable envelope, and the utilisation of the uncertainty
information in the GPR model.
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