
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Abstract—In recent years some direct monocular SLAM 
methods have appeared achieving impressive semi-dense or 
dense 3D scene reconstruction. At the same time, feature-based 
monocular SLAM methods can obtain more accurate trajectory 
than direct methods, but only obtain sparse feature point map 
rather than semi-dense or even dense map like direct methods. 
With the development of deep learning, it becomes possible to 
predict the depth map of a scene given a single RGB image. In 
this paper we demonstrate how depth prediction module via 
deep learning can be used as a plug-in module in highly accurate 
feature-based monocular SLAM (e.g. ORB-SLAM). Both 
accurate trajectory from ORB-SLAM and dense 3D 
reconstruction from depth prediction can be achieved. 
Evaluation results show that dense scene reconstruction can be 
obtained from highly accuarate feature-based monocular SLAM. 

I. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is an 
active research area in computer vision and robotics. Its main 
goal is to reconstruct three-dimensional scenes and estimate 
camera pose [1] [2] [3]. Feature-based SLAM generally obtains a 
sparse landmark map. Sparse maps only model parts of interest, 
i.e. feature points or landmarks. From the point of localisation, 
sparse feature point maps can be used to locate the camera or 
robot. But the spatial structure between several feature points 
cannot be inferred, so we can not achieve navigation, obstacle 
avoidance and other tasks which only dense maps can 
accomplish. Recently, methods to incorporate real-time 
SLAMs and depth maps obtained from depth sensors have 
become increasingly popular, because depth information is of 
vital importance in a lot of engineering applications, such as 
robotics, augmented reality, computer graphics and 
autonomous driving. 

However, all kinds of depth sensors have their limitations. 
For example, the 3D LiDAR is very expensive, and can only 
provide sparse depth values. The depth sensor (e.g. Kinect) 
based on structured light is sensitive to light, consumes 
electricity and has a short range. Finally, stereo cameras 
require long-range baselines and require precise calibration for 
accurate triangulation, which requires a lot of calculations and 
often fails in feature-deficient areas. 

Due to these limitations, there has been a strong interest in 
semi-dense and dense SLAMs based on monocular cameras 
that are small, low cost, energy-efficient, and ubiquitous in 
consumer electronics. The objective of these methods in [5][6] 
is to reconstruct scenes in real-time using single camera and 
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estimate the depth map of the current perspective by stereo 
matching between some adjacent frames. A necessary 
condition for these methods to work well is that the camera 
must translate in space. Stereo matching relies on the intensity-
invariance assumption or keypoints extraction and matching. 

A major limitation of the monocular SLAM method is the 
inherent scale-ambiguity. In fact, even if camera pose 
estimation and scene reconstruction are accurate, the absolute 
scale of this reconstruction is still ambiguous in nature. This  
limits the use of monocular SLAM in most applications such 
as robotics and augmented reality. Some methods use object 
detection techniques to match the scene with a predefined set 
of three-dimensional models to solve the problem, but these 
methods fail if there are no known shapes in the scene. Another 
major limitation of monocular SLAM is pose estimation under 
purely rotating camera motion. In this case, stereo vision 
estimation cannot be used due to the lack of a stereo baseline, 
resulting in failed tracking. 

Recently, a new method was proposed to deal with depth 
prediction from single images through learning methods. In 
particular, the use of an end-to-end convolutional neural 
network [7] has demonstrated the possibility of obtaining high-
resolution and high-accuracy depth maps, even in scenes that 
lack mono-clues. One advantage of the deep learning methods 
is that the absolute scale can be learned from the data so that it 
can be predicted from a single image without requiring scene-
based assumption or geometric constraint. 

From the above narrative, we can see that depth prediction 
based on deep learning and monocular SLAM can be 
organically combined to achieve complementarity. The main 
contribution of this paper is that we demonstrate depth 
prediction based on deep learning can be used as a plug-in 
module in sparse visual SLAM (e.g. ORB-SLAM) to get 
accurate trajectory and dense point cloud. 

II. RELATED WORK 

In this section we review monocular SLAM and depth 
prediction that we integrate in this paper. 
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A. Monocular SLAM 
From a methodological viewpoint, monocular SLAM can 

be divided into either feature-based and direct. As for featured-
based method, ORB-SLAM[8] can obtain the most accurate 
pose estimation. This method depends on sparse ORB features 
from the input single image. Hence ORB-SLAM can only get 
sparse feature point maps. This leads ORB-SLAM to be used 
only for localization and not for other applications such as 
navigation. Meanwhile, direct methods use all the information 
of the image. These methods track most or all the pixels in the 
image. So they can achieve semi-dense or dense reconstruction. 
However, how to simultaneously estimate dense structure and 
motion is still an open problem. Direct method has lower 
tracking accuracy than feature point method. 

B. Depth Prediction 
Stereo vision uses paired images for 3D scene 

reconstruction, which is a traditional method of depth e. In the 
single-view case, most approches rely on SFM.These methods 
usually make strong assumptions on scene geometry. For 
example, Saxena et al. [9] estimated the absolute scale of local 
and global image patches and inferred the depth map using a 
Markov Random field model. Another class of analogous 
work comprises non-parametric approaches. These methods 
typically perform feature-based matching (e.g. GIST) between 
a given RGB image and the RGB-D images database, we can 
retrieve the depth counterparts which are combined to produce 
the final depth map. 

More recently, revolutionary progress in the field of deep 
learning drove research of using CNNs for depth prediction. 
Since depth prediction is very similar to regression task, 
almost all works built on the most successful architectures of 
ImageNet Large Scale Visual Recognition Challenge[10], such 
as AlexNet [11] or ResNet [12]. Eigen et al. [13] have been the 
first to propose a two-stack convolutional neural network, with 
the first stage producing the global coarse output and the other 
refining local details. Another direction for improving the 
quality of predicted depth maps is the combined usage of a 
deep CNN and a continuous conditional random field. 

III. METHODOLOGY 

In this section, we describe the pipeline of dense mapping 
from highly accurate ORB-SLAM based on depth prediction, 
as shown in figure 2. We can see from the figure that depth 
prediction is used as a plug-in module of ORB-SLAM. Hence, 
our system can take both advantages of ORB-SLAM and deep 
learning, achieving state-of-the-art accurate trajectory and 
dense map. We will review the three parts used in our system : 
ORB-SLAM for highly accurate localization, deep learning 
for depth prediction and methods for constructing dense map. 

A. Highly Accurate ORB-SLAM 
The ORB-SLAM is used to estimate the poses of 

keyframes. All its tasks utilize ORB features. The ORB feature 
improves the FAST corners to make it direction-sensitive and 
uses binary descriptors to speed up matching. ORB is at two 
orders of magnitude faster than SIFT, and is rotation invariant 
and resistant to noise. ORB-SLAM consists of three system 
threads: tracking, local mapping and loop closing[5]. Tracking 
thread process all images from the camera get the camera pose 
and decide whether to insert a new keyframe. Local mapping 
thread process every new keyframe and performs local bundle 

 
Figure 2.  Pipeline of dense mapping from ORB-SLAM based on 

depth prediction.  

 
Figure 1.  Deep neural network architecture[7].  
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adjustment to achieve local optimal reconstruction in the 
nearby of the camera pose. The loop closing thread query 
keyframe database and detect loop closure. Loop closure 
detection can eliminate accumulated errors and construct 
globally consistent trajectories and maps. 

B. Deep Neural Network for Depth Prediction 
The CNN architecture estimates the depth map of a scene 

given a single RGB image is shown in figure 2. The method 
comes from Laina et al. [7]. The architecture depends on 
ResNet-50 [12] and replace the fully-connected layers with 
novel up-sampling blocks shown in figure 3.  

As we know, fully-connected layer introduces billions of 
parameters. Replacing the fully-connected layer with an up-
sampling layer not only reduces the number of parameters but 
also gets a high resolution depth map (the predicted depth map 
is almost half the resolution of the input image). The predicted 
depth map from DNN can be seen in figure 4. 

Table I list state-of-the-art results of depth prediction on 
the NYU-Depth-v2 dataset. Samples indicates the number of 
depth value which is used for our CNN architecture. We can 
conclude that sparse depth values can improve the results 
greatly. RMSE stands for root mean squared error. The unit of 
RMSE is meter. i  stands for the percentage of predicted 
values where the relative error is under a threshold. 

Specifically,  

ˆˆ : max , 1.25
ˆ

ii i
i

i i
i

i

y ycard y
y y

card y
 , 

where iy  and ˆ iy  are the groundtruth and predicted value 

respectively, and card  is the set’s cardinality. 

TABLE I.   DEPTH PREDICTION ERRORS 

 

C. Dense Mapping 
 For real-time considerations, we only use keyframes to 

construct dense map. Based on the pixel depth value and 
camera intrinsics , we can calculate the position of any pixel in 
the camera coordinate system. Camera intrinsics which can be 
obtained from calibration is denoted as follows : 

          

0
0 .
0 0 1

x x

y y

f c
K f c             (1) 

Unlike the ORB-SLAM, which can only get the depth 
value of sparse feature points, we use depth prediction to get 
the depth value of all pixels described in III-B. ORB-SLAM 
can obtain the accurate pose of keyframes. Based on these 
poses, the position of the pixels in the world coordinate system 

Method Samples RMSE 1  1  3  

Laina et al. [7]
 0 0.573 81.1 95.3 98.8 

Ma, 
Fangchang[4] 200 0.230 97.1 99.4 99.8 

 
Figure 3.  up-sampling blocks 

 

 
Figure 4.  Depth prediction.  

The first column is RGB images. The middle column is groundtruth. The last column is our results. 
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can be calculated. The formula is as follows , where (u, v) 
stands for pixel coordinates, d stands for depth value of pixels, 
PC stands for coordinates in camera frame, PW stands for 
coordinates in world frame, TWC stands for transformation 
matrix from camera frame to world frama. 

**
T

yx
c

x y

v c du c d
P d

f f
,    (2) 

           w wc cP T P .                  (3) 

Besides, we take three additional procedures to improve 
the performance: 

 Remove the point where the depth value is too large, 
because error at these points is relatively large. 

 Use statistical filter to remove outliers. The filter 
counts the distribution of the distance values of each 
point from its nearest N points, and removes points 
whose average distance is too large. In this way, we 
keep the points that gather together and removed the 
isolated noise points. 

 Use voxel filter for downsampling. Due to the overlap 
of view fields from multiple perspectives, there will 
be a large number of closely related points in the 
overlapping area. The voxel filter guarantees that 
there is only one point in a certain size cube, which is 
equivalent to downsampling the three-dimensional 
space, which can save a lot of storage space. 

IV. EXPERIMENTS 

In this section, we valuate the performance of our method. 
Our system embed depth prediction which is based on deep 
learning within highly accurate ORB-SLAM. We use 
sequence from TUM RGB-D SLAM [14]. In our experiments, 
we train our CNN model on the indoor sequences of the NYU 
Depth v2 dataset, to test the generalization capability of our 
model to unseen environments. It is noteworthy that the scene 
of the training dataset are quite different from the testing 
dataset. Figure 5 lists the results. 

We test the system using a laptop with i5-6300HQ CPU. 
The average time of tracking module is about 30 ms per frame. 
The time consuming deep learning module runs in a separate 
time. Therefore it does not affect the real-time nature of the 
system. 

V. CONCLUSION 
We have demonstrated that the combination of ORB-

SLAM and depth prediction based on deep learning is a 
promising direction to solve the inherent limitations of 
traditional monocular SLAM. One of the significance is that 
we can obtain dense point clouds through feature-based 
monocular SLAM. Features (e.g. ORB) is to a certain degree 
invariant to illumination and viewpoint, so our system is more 
robust and accurate than direct methods. Thus, our system 
obtain both advantages of feature-based method and direct 
method. 

The main limitation of our system is the accuracy of depth 
prediction. The RMSE of the CNN model used in our system 
is 57 cm, which is relatively high compared with ORB-SLAM 
localization accuracy. Fangchang [4] propose a new model 
which combine RGB images and sparse feature points 
obtained from monocular SLAM. Our future work can use 
this model to achieve better 3D scene reconstruction. 
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Figure 5.   Dense reconstruction. 
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