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Abstract—Micro Aerial Vehicles (MAV) have been seen rapid 

progress in the indoor entertaining, security monitoring, as well 

as search and rescue activities. The indoor localization with 

lightweight sensors in a Global Positioning System (GPS-denied) 

environment is a challenging topic for MAVs autonomous flight 

and path planning. This paper proposes a novel indoor 

localization approach relying on only the IMU and four 

ultrasonic sensors. Four mutually perpendicular installed 

ultrasonic sensors are used to provide distances of each direction. 

A prior map and an improved multiple rays model are 

constructed to approximate the measurement of the ultrasonic 

sensor. A fast algorithm to calculate the Jacobian matrix of the 

measurement function is given, then an Extended Kalman Filter 

(EKF) is conducted to fuse the information from IMU and the 

sonar sensor. The proposed algorithm is validated by the 

simulation and the results indicate good localization 

performance and robustness against compass measurement 

noise. 

I. INTRODUCTION 

The Micro Aerial Vehicle(MAV) has the characteristics of 
small size and high flying agility, it can replace human works 
in hazardous environment , adverse conditions and/or narrow 
space, and it has been widely applied to various fields[1][2][3]. 
One of the fundamental to flying the MAV autonomously is 
the ability of indoor localization. However, due to the strict 
restrictions on the size and weight, the available localization 
sensors for MAV are also limited. So how to utilize low-cost 
and lightweight sensor resources to locate the MAV in a 
complex and ever-changing indoor environment is a hot and 
challenging issue.  

Most of the outdoor navigation algorithms are based on 
Global Positioning System(GPS), while the GPS signal is 
usually poor in the indoor environment.  In order to achieve 
indoor localization, a variety of solutions are proposed[4], 
which are based on ranging sensors[5][6], Inertial Measurement 
Unit(IMU), cameras[7], WLAN[8], ZigBee[9] and radio 
frequency sensors[10]. In this paper, the above approaches are 
divided into two types by whether the localization sensors are 
placed on the UAV or not, i.e., the onboard-sensor-based 
approach and offboard-sensor-based approach. 

The offboard-sensor-based approach needs to prearrange 
some equipment in the UAV’s flight environment. Circket is 
an indoor localization system based on ultrasonic and radio 
frequency signals developed by the MIT[11], it consists of 
several beacons fixed on the ceiling and a moving signal 
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receiver. The distance between the beacon and the receiver is 

calculated by the time difference of arrival(TDOA)，and the 

position of the receiver is estimated by the Kalman Filter(KF). 
In [12], multiple WiFi base stations are placed at known 
coordinates, the intensity of the WiFi signal is collected as the 
UAV traverses the base station and then converted into 
distance, and then different algorithms are used to estimate the 
location of UAV according to the number of signals collected. 
Another way of localization over WiFi is to use fingerprinting 
method. In [13], the fingerprint database is established by the 
WiFi signal intensity and a multi-core learning algorithm is 
used to estimate the UAV’s position. In [14], the author 
combines the data from the IMU, Ultra Wide Band(UWB) 
and 3D laser scanner through the Kalman Filter to improve the 
accuracy of localization. In [15], an active base station system 
is proposed, a rotatable base station is used to reduce the 
signal measurement dead zone, thus the localization problem 
is considered as a nonlinear least squares problem. Newton's 
iterative method is used to calculate the optimal position and 
the localization accuracy depends on the number of base 
stations. 

The offboard-sensor-based approach requires external 
device’s assistance, thus it is hard to be applied to the 
unknown environment. As a result, many researchers have 
studied how to achieve localization through as few 
pre-installation devices as possible, most of these methods use 
vision or laser radar sensors. In [16], the data from IMU and 
lidars are used as input to the odometer, the position of the 
UAV and the map is given simultaneously. In [17], a 
landmarks-based method is introduced. Some simply shaped 
objects, such as walls, corners and edges, are chosen as 
landmarks. And 16 ultrasonic sensors are mounted around the 
mobile robot to identify and measure the distance to the 
landmarks. Then the robot's position can be given when two 
geometrical elements are successfully identified. In [18], the 
extracted and matched SIFT features are used to construct 
nonlinear least squares problems, then the pose of the UAV is 
solved by Gauss Newton method, which use IMU to estimate 
the initial value of the solution. In [19], the Harris corner 
detection algorithm is used to detect the corner points, and the 
corner points of the two adjacent images are matched to obtain 
an optimized objective function, then by the LM algorithm for 
nonlinear optimization, and finally get the UAVs pose. In [20], 
the lamp on the ceiling is used as landmark, through the 
extraction of feature points on the lamp and then real time 
localization can be realized by combining the relevant 
information of the landmark in the database. In [21], the lidar 
data is segmented using KD trees and then the PLICP 
algorithm is used to match the point sets of two adjacent scans, 
the error equation is constructed according to the distance 
between these matching points. through the iterative solution 
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of the equation, the rotation and translation of two adjacent 
scans are calculated, and then the position of the robot is 
estimated. In [22], the author uses the planar object for 
positioning. First, the laser data is segmented and plane fitting. 
Then use a variant of the hill-climbing algorithm to match the 
planes in two adjacent scan data. Finally, 3 successful 
matching planes are selected to calculate the location of the 
robot based on the geometric relationship. 

In summary, most of the offboard-sensor-based approach 
are based on distance sensor, usually place the base station on 
the ceiling, some use a large amount of ultrasonic to extract 
the geometric features of the environment. While most of the 
onboard-sensor-approach use vision sensors or lidar sensors, 
often have a large amount of computation due to the extraction 
and matching of feature and the nonlinear optimization step 
for position calculating. In contrast, we use only 4 ultrasonic 
sensors to achieve position estimation. The geometrical 
relations are used to deduce the Jacobian matrix of the 
observation equation. The computational complexity is low, 
which satisfies the limitation of MAV on computing 
resources. 

This paper is organized as follows. The MAV platform 
and the ultrasonic measurement model are presented in 
Section II. The MAV system is modeled in the third section. 
Section IV presents the localization algorithm based on EKF. 
Section V validated the algorithm in the simulation 
environment and verifies the robustness of the algorithm. 

II. THE MAV PLATFORM 

The MAV used in this paper is in “X” configuration, and 
four ultrasonic rangefinders are installed along body axis for 
localization, as shown in Fig.1. 

 

Figure 1. The MAV configuration and body reference frame 

The airframe of the MAV and the ultrasonic sensors are 
shown in Fig.2, the weight of the MAV is about 75g and its 
wheelbase is 13.5 cm. The angular velocity and movement 
acceleration of MAV are measured by the MPU6000 IMU 
sensor, and the heading angle is provided by the magnetic 
sensor LSM303, and both have a sampling period of 8ms.The 
operating system runs on the flight control board is the PX4. It 
is easy to develop customized tasks, and all the data during the 
flight period are easy to store. 

 
Figure 2. The MAV and sonar platform 

The ultrasonic module is installed on the bottom of the 
MAV, it contains four SFR01 sensors which are perpendicular 
to each other, and the range measurements of four directions 
are given separately. The SRF01 sensor is a single transducer 
ultrasonic sensor, its diameter is 1.6cm and the net weight is 
about 3g. The maximum measurement distance is 6m and the 
minimum measurement distance can be reduced to 0cm. The 
measurement time interval is 200ms. 

Fig.3 shows the detection area of the SRF01, it is obtained 
by placing and measuring the obstacle in the predefined grid 
points in front of the ultrasonic sensor, and it can be 
approximated as a polygon. 

 

Figure 3. SRF01 polygon model 

To reduce the computational load of the polygon model, 
the multiple-rays model is proposed by connecting the origin 
to the vertex of the polygon model, as shown in Fig.4. 

 

Figure 4. SRF01 multiple-rays model 

Thus, the ultrasonic multiple rays model S  can be 

formulated as 
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x ys  denotes the sensor’s position in the map 

coordinate system, jd and j  is the length and the angle of 

the thj  ray, respectively. Then the measurement value is 

given by 
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j j jx y   q is the intersection of the environment 

and the thj  ray, if there is no intersections the measurement 

value is set to a predefined value 
0q . The jq  that minimized 

(2) is defined as the active intersection, and the thi  ray is 

defined as the active ray of this sonar. 



  

Compared the polygon model, the multiple-rays model 
may lead to a decrease in the accuracy. When a small obstacle 
is just in between two adjacent rays, it will not be detected. 
The resolution of the multiple-rays model is 
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The maximum measurement error occurs when the obstacle is 
just at the polygon boundary, as 
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For big size obstacle, such as a wall, the multiple-rays model 
error is related to the angle between the wall and the ultrasonic 
central axis. Let the angle between the wall and the ultrasonic 
central axis is  , the maximum error is 

   = 1 sine jl l    ,                         (5) 

where j  represents the thj  ray that minimizes (2), i.e., the 

active ray, and l  denotes the true value of the sensor. 

III. THE INDOOR LOCALIZATION SYSTEM MODELING 

Two coordinate systems, the map coordinate system 

m m mm x y zO   and body coordinate system 
b b bb x y zO  , are 

introduced for modeling and navigation of the MAV. 
mO is an 

Earth-fixed and north-east-down(NED) coordinate system 

where the origin is located at the starting corner 
0m  of the 

map M . The matrix    2 1

0 2m ,m , ,m
n

n R
 
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coordinate list of  m , 0 ~
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T
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counter-clockwise. The origin of the body coordinates is fixed 
to the center of gravity of the MAV, as shown in Fig.5. 

 

Figure 5. The map coordinate system 

Measured by a magnetic sensor, the heading angle of 
MAV in the map coordinate is given by  , thus the rotation 

matrix from the body coordinate system to the map coordinate 
system is given by 
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which implies that 
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where 
ba  and 

ma  denote the acceleration in body coordinate 

system and in map coordinate system, respectively. Then the 
discrete state equation of the MAV is given as 

( 1) ( )k k k     ( )X A X B u ,                 (8) 

2

2

 1      0   0 02

00   1   0   0
,  ,  ( ),

  20   0   1   0

0   0   0   1 0

x

y

mA A

m
A

m

mAA

A m

xT T

vT
k

yTT

T v

   
   
          
   
       

A B u a X

(9) 

where X is the state of the MAV, including the position 

 ,m mx y  and the velocity ,
x ym mv v 

 
 in the map coordinate 

system, 
AT is the sampling period of the accelerometer. The 

measurement equation is a nonlinear function given by 

 ( ) h ( ), ( ), ( ), ,m mk x k y k kl M S ,            (10) 

where  1 2 3 4   
T

l l l ll  denotes the distances measured by 

four sonars. 

IV. INDOOR LOCALIZATION METHOD BASED ON EXTENDED 

KALMAN FILTER 

Based on the above MAV model, the EKF algorithm is 
used to estimate the MAVs location. When both the state 
equation and the measurement equation are in linear form, the 
linear KF is an effective approach. However, in this case, the 
measurement (10) is in a non-linear form, then the EKF can be 
used. The implementation of EKF and KF are roughly the 
same, which can be divided into two steps: the prediction and 
the correction. 

The idea of using EKF for state estimation in nonlinear 
systems is to carry out Taylor expansion of the nonlinear 
function and omit the second-order and the higher-order terms 
to obtain the approximate linearized model, and then estimate 
the system state by the KF. The partial derivative of the 
measured distance to the system state, which is the Jacobian 
matrix H  of the (10) have a form of (11). 
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However, due to the complexity of sonar model and the 
environment, it is hard to  get the explicate form of (10), thus 
we cannot calculate the Jacobian matrix directly.  

In this paper we present a method to calculate the Jacobi 
matrix. Since the interval between two consecutive sensor 
samples is small, the following assumptions are made: 



  

 The heading angle of MAV remains unchanged in two 
adjacent sampling. 

 The active ray of the thi  sonar remains unchanged in 

two adjacent sampling. 

 The active wall, i.e., the segment of M  that has the 

active intersection with the thi  sonar, remains 

unchanged in two adjacent sampling.  

Based on the above assumptions and set a small increment 
to the MAVs horizontal and vertical position, the specific 
expression of partial derivative in (11) can be drawn 
according to the geometric relationship by 
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where 
i  denotes the heading angle of the i th active wall, 

and 
i  denotes the angle between the active ray of the i th 

sonar and the corresponding active wall. 

Note that the accelerometer used in this paper has a 
sampling period of about 8ms while the ultrasonic sampling 
period is 200ms, i.e., the accelerometer sampling frequency is 
much higher than the ultrasound, the strategy is introduced: 
When the sonar does not get an updated measurement, we use 
the accelerometer’s measurement to calculate the position and 
variance of the UAV as (13), where Q  is the process noise of 

the system. 
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And then the result obtained from (13) is directly used as the 
filtering result of EKF in this step as 
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When the ultrasonic samples new data, it is used to correct the 
result obtained in (13), the correction step is as (15), where R  
is the noise variance matrix of the measurement equation. 
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The entire EKF algorithm flow is shown as Fig.6. 

 

Figure 6. The EKF algorithm flowchart 

V. THE SIMULATION RESULTS 

The proposed localization algorithm is validated by the 
simulation in this section. A polygon priori map is given as 
shown in Fig. (8), and the initial states of the MAV are given 
by 
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The time varying accelerations are used for driving the MAV 
as Fig.7. According to the MAVs math model, the actual flight 
path is given in Fig.8  

 
Figure 7. The acceleration data in MAV body axis 

 
Figure 8. The actual path of the MAV 

In Fig.8, the blue line represents the border of the wall, the red 
line represents MAVs flight path, and “+” corresponds to the 
MAV position that ultrasonic sensors have a sampling data. 
The sampled data of accelerometer using in the simulation is 
formed as 



  

  a a + 0,b b AV ,                          (16) 

where ab
 is the true acceleration and  0, AN V  is a Gaussian 

noise with variance of 
AV .  

For a MAV in this map, since the position, the heading 
angle, the map and the ultrasonic model are known, therefore, 

the ultrasonic theoretical measurement l̂  is known. We also 

add a Gaussian noise with variance 
SV  to it, where 

SV  

matches the actual ultrasonic characteristics. 

 l l + 0, sV                           (17) 

Table 1 summarizes the parameters used in the simulation. 

TABLE I.  THE SIMULATION PARAMETERS 

Simulation parameter Value Units 

Accelerometer sample period 8 ms 

Sonar sample period 200 ms 

Yaw angle 45 ° 

Accelerometer variance 2.2 m/s2 

Sonar variance 0.007 m 

Process noise covariance diag([1, 0.2,1, 0.2] )
T

 - 

Measurement noise 
covariance 

0.007diag([1,1,1,1] )
T

 - 

 
In most of the situation, the sonar measurement changes 

continually over the position of MAV, however in some 
specific situation it may occurs a jump due to the 
non-continuity of (10), and this may lead an adverse impact on 
the localization algorithm. Two typical cases are shown as 
Fig.9 and Fig.10. 

 

Figure 9. Typical cases 1 

 
Figure 10. Typical cases 2 

As shown in Fig.9, when the MAV is passing a corner, a 
jump appears in the measurements of the ultrasonic sensor. 
Fig.10 shows another typical case, when the MAVs distance 
to the wall is greater than its max measuring range, the 
ultrasonic will not return a meaningful measurement, as the 
MAV closes to the wall, the measurement status of ultrasonic 
will have an abrupt change. 

In EKF, these abrupt changes may introduce a jump in the 
estimation, to solve this problem, a jump filter is given as 
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Therefore,    ˆk kl l term of each ultrasonic is used to filter 

the jump before the correction step (15). If its value exceeds 
the predesigned threshold  , the corresponding measurement 

will not be used in the estimation. 

The localization results of the original EKF and the 
improved algorithm are shown as Fig.11 and Fig.12.  

 
Figure 11. The original EKF localization result 

 
Figure 12. The improved EKF localization result 

 

Figure 13. 
i
  history during localization 

The blue dash line in Fig.11 represents the MAVs position 
estimated with the integral of accelerometer, it shows the 
position error is increasing over time due to the drift of the 
accelerometer, and the localization accuracy is poor. The 
black line marked with “+” in Fig.11 and Fig.12 show the 
localization result of the original EKF and our propose 
approach, respectively. We can see that the original EKF can 
significantly improve the positioning accuracy in most of the 



  

case, however there are some jumps in the estimation result. 
As shown in Fig.12, the proposed method is very robust 
against the abrupt measurement, therefore the positioning 

accuracy is improved. The curve of 
i  during localization is 

shown in Fig.13. 

The comparison of the estimated position of the original 
EKF and the improved EKF are shown in Fig.14, where the 
red line represents localization error of the accelerometer and 
blue line represents the localization error by proposed 
algorithm. The simulations results in Table 2 are summarized. 

 
Figure 14. The localization error of original EKF algorithm(lefet) and 

improved EKF (right) 
As shown in Fig.14, compared with the integration of 

accelerometer, the proposed EKF localization algorithm is 

more accurate and effective. Table 2 shows that with the 

addition of the jump filter, the localization error is reduced 

obviously. 

TABLE II.  LOCALIZATION ERROR 

Localization error average error(m) max error(m) 

EKF  0.30 2.3 

Improved EKF error 0.06 0.58 

Considering the low accuracy of the magnetic sensor in 
practice, the robustness of the localization algorithm against 
the heading angle is verified. A Gaussian noise with zero mean 
and 5° covariance is added to the heading angle measurements, 
and the estimation error is shown in Fig.15. 

 
Figure 15. Localization error(with Gaussian noise in yaw angle) 

The result shows that the localization errors under the 
noisy yaw angle remains the same, which reflects the good 
robustness of the proposed localization algorithm. 

VI. CONCLUSION 

This paper presents a novel indoor localization algorithm 
based on EKF, which only relies on four ultrasonic sensors. 
The computational cost of the algorithm is small and can run 
in real time on a MAV. Future work is to move the algorithm 
to the MAV platform to realize the actual operation. 
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