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Minimum-energy Control of Nearly-controllable Discrete-time Bilinear
Systems with Nondiagonalizable Structure

Linxiang Cheng, Jiapeng Liu, and Lin Tie

Abstract— In this paper, a class of discrete-time bilinear
systems which are uncontrollable but can be nearly-controllable
is considered. A necessary and sufficient condition for near-
controllability of such systems was obtained and the corre-
sponding control inputs to achieve the transition of the systems
between any given pair of states are computable, but there are
infinite groups of such control inputs. Therefore, this paper
proposes a new algorithm, which attempts to find a minimum-
energy control sequence to achieve the state transition and
improves the previous algorithm for computing the control
inputs. Analysis and examples are given to illustrate the
proposed algorithm.

I. INTRODUCTION

Near-controllability is defined for those nonlinear systems
that are uncontrollable but own a large controllable region
[1,2], which has recently attracted attention [3,4]. The in-
terest of near-controllability lies in the fact that it can not
only better characterize nonlinear systems but also prove
controllability [5,6]. More specifically, there do exist un-
controllable nonlinear systems which are nearly-controllable,
and if we only use “uncontrollable” to describe such systems,
we may miss some valuable properties of them. Furthermore,
a controllable system is also nearly-controllable and it is
easier to prove near-controllability than controllability. When
the near-controllability problem of a control system is solved,
it is not far from proving its controllability.

The notion of near-controllability was first introduced and
demonstrated on the following discrete-time bilinear system

x (k + 1) = (I + u (k)B)x (k) , (1)

where x (k) ∈ Rn, u (k) ∈ R, and B ∈ Rn×n is a constant
matrix. Bilinear systems have been extensively investigated
over decades. Such systems form an important class of
nonlinear systems, which have wide applications ranging
from engineering to non-engineering fields, e.g. chemistry,
biology, and socio-economics [7,8]. For instance, system (1)
can be used to model the biological species populations,
where x (k) is the population that needs to be positive and
u (k) is the growth rate that is constrained. Moreover, the
applications of discrete-time bilinear systems have increased

*This work was supported by the National Natural Science Foundation
of China (61973014).

†The authors are with the School of Automation Science
and Electrical Engineering, Beihang University, Beijing,
P. R. China chenglingxiang@buaa.edu.cn;
liujiapeng@buaa.edu.cn; tielin@buaa.edu.cn

in the modeling and control of power systems [9] and
complex networks [10,11].

Since system (1) is uncontrollable on Rn for any finite
dimension1, it is natural to consider the largest controllable
region2 of the system in the state space. As a result, the
near-controllability problem of system (1) was considered
and a necessary and sufficient condition for system (1) with
B having only real eigenvalues to be nearly-controllable
was obtained in [1]. Specifically, [1] proved that, under the
condition of B’s eigenvalues being nonzero real and B being
cyclic and having no Jordan block with dimension greater
than two in its Jordan canonical form, the uncontrollable sys-
tem (1) has a large controllable region which nearly covers
Rn such that the system is nearly-controllable. Furthermore,
thanks to the root locus approach, the control inputs to
achieve state transition between any given pair of states can
be computed. The similar idea was also used in [12] to
prove near-controllability of discrete-time bilinear systems
with diagonal form and to obtain the computable control
inputs, where the corresponding transfer function derived in
[12] contains only single poles due to the diagonal form, so
that all the root loci start moving along the real axis no matter
what the zeros are and the Implicit Function Theorem was
not needed in [12]. This is different from the nondiagonal
case in [1], where the root locus approach and the Implicit
Function Theorem are both needed and near-controllability
is more difficult to prove.

Although [1] completely solved the near-controllability
problem of system (1) when B has only real eigenvalues
and the required control inputs to achieve state transition
can be computed, the optimal control problem, especially,
the minimum-energy control problem has not been well
addressed. Note that in the diagonal case, i.e. B is diago-
nalizable, the minimum-time and minimum-energy control
problems were studied in [13,14] by derivation analysis of
single variable and the root locus theory, and theoretical
algorithms were proposed to prove the optimality. Howev-
er, if B is nondiagonalizable, the minimum-energy control
problem would be much more complicated since there are
more parameter variables and the algorithms proposed in
[13,14] do not work. Therefore, in this paper, we aim to

1Although the system is controllable on Rn
∗ : Rn\{0} for n = 1, 2, it

is uncontrollable on Rn
∗ for any n > 2, let alone Rn.

2A controllable region is a region in the state space on which the system
is controllable. Namely, for any ξ, η in this region, there exist control inputs
that steer the system from ξ to η.
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study the minimum-energy control problem of system (1)
with nondiagonalizable structure, i.e. B is nondiagonalizable.
Based on the original algorithm in [1] for computing (not
minimum-energy) control inputs, we propose a new algo-
rithm to try to solve the minimum-energy control inputs in
the nondiagonalizable structure case.

The paper is organized as follows. The near-controllability
theory and minimum-energy control problem for systems (1)
are presented in Section II. An algorithm for solving the
minimum-energy control inputs is proposed in Section III.
Examples are provided in Section IV and concluding remarks
are given in Section V.

II. PROBLEM FORMULATION

Definition 1 [1]. System (1) is said to be nearly-
controllable if, for any ξ ∈ Rn \E and any η ∈ Rn \F , there
exist a finite control sequence u (k) (k = 0, 1, . . . , l − 1)
where l is a positive integer such that the system can be
steered from ξ to η at k = l, where E and F are two sets of
zero Lebesgue measure in Rn.

If E , F = ∅, the definition degenerates to the control-
lability definition. That is, near-controllability includes the
notion of controllability and is defined more generally than
controllability. This property is well-suited and valuable to
analyze those systems that are uncontrollable but have a large
controllable region from the perspective of controllability.
For near-controllability of system (1), [1] gave a necessary
and sufficient condition as follows.

Theorem 1 [1]. Consider system (1) with B having only
real eigenvalues. Then, the system is nearly-controllable if
and only if B is nonsingular, cyclic, and has no Jordan block
with dimension greater than two in its Jordan canonical form.

Note that, if B satisfies the conditions in Theorem 1 and
if it is also nondiagonalizable, then B can be transformed
into the following form

λ1 1
λ1

. . .
λr 1

λr

λr+1

. . .
λm


, (2)

where λ1, λ2, . . . , λm are nonzero, real and pairwise distinct
and m + r = n. Thus, without loss of generality, B is
assumed to take the form in (2) throughout this paper.

Based on the proof of Theorem 1, [1] also proposed an
algorithm to solve the control inputs steering the nearly-
controllable system (1) from given initial state to given
terminal state in

Rn
\{

ξ
∣∣ ∣∣ ξ Bξ · · · Bn−1ξ

∣∣ = 0
}
.

Algorithm 1 [1]. Steps on computing control inputs for
given initial state ξ and terminal state η.

Step 1. Transform B into the Jordan canonical form by
a nonsingular matrix P . ξ, η are thus transformed into Pξ,
Pη, respectively.

Step 2. Find the control inputs that transfer Pξ to a state
ζ which belongs to the same orthant as Pη belongs to.

Step 3. Get the transition matrix Tζ→Pη for ζ, Pη

Tζ→η ,



T1

. . .
Tr

η2r+1

ζ2r+1

. . .
ηn

ζn


,

where Ti ,
[

η2i

ζ2i

η2i−1

ζ
2i

− ζ2i−1η2i

ζ2
2i

0
η
2i

ζ2i

]
.

Step 4. Choose λm+1, λm+2 such that

0 < |λm+1| < min {|λ1| , . . . , |λm|} <

max {|λ1| , . . . , |λm|} < −λm+2, (3)

where λ1, . . . , λm are the eigenvalues of B.
Step 5. Choose a positive integer q and compute T

1
q

ζ→Pη.
Step 6. Obtain the root loci of

1 +KG (s) , 1+

K
(
(−1)

2m+2
µ1s

2m+2 + · · ·+ (−1)µ2m+2s+ 1
)

s (s+ λ1)
2 · · · (s+ λm)

2
(s+ λm+1) (s+ λm+2)

= 0,

(4)
where

[
µ1 · · · µ2m+2

]T
is given in (2.15) in [1].

If any of the root loci leaves the real axis directly at
the pole, then return to the former step and choose another
integer q greater than the previous chosen one. Otherwise,
choose a suitable K such that the roots of 1 + KG (s) =
0 are all real. Then, the reciprocals of the real roots of
1 + KG (s) = 0 are the control inputs that transfer ζ to

T
1
q

ζ→Pηζ. q groups of such control inputs together with the
control inputs that transfer Pξ to ζ are the desired ones which
steer the nearly-controllable system (1) from ξ to η.

As we can see from Algorithm 1, there are four parameters
λm+1, λm+2, q and K which influence the control inputs
for the system to achieve state transition and there exist
infinite groups of such control inputs. This is different from
the diagonal case studied in [13,14] that there is only one
parameter K which influences the control inputs. Therefore,
it is much more complicated to find the minimum-energy
control inputs in the nondiagonalizable case. This will be
seen more clearly when we derive the energy function in the
next section.

Through the analysis on Algorithm 1, we finish the
programming of each algorithm module and preliminary
improvement with it, including the solution and verification
of control inputs. Note that Algorithm 1 can be completed in
polynomial time with computational time complexity O(n2).
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That is, as the input increases, the running time of Algorithm
1 increases in polynomial form rather than exponential
form. Therefore, the algorithm can work efficiently even if
considering high-dimensional system (1).

Since Algorithm 1 can offer the control sequence but not
an optimal one, in this paper, we propose a new algorithm to
try to find a minimum-energy control sequence. To make the
idea more clear, we focus on the case when the initial state ξ
and terminal state η belong to the same orthant of Rn, i.e., ξi
and ηi have the same sign for i = 2, 4, . . . , 2r, 2r+1, . . . , n.

The minimum-energy control problem for the nearly-
controllable system (1) with finite control inputs is stated as
follows: For any given initial state ξ and any given terminal
state η in the same orthant of Rn, define the control energy
by

W = q ×

(
2m+2∑
i=0

u2 (i)

)
, (5)

where u (0) , u (1) , . . . , u (2m+ 2) are the control inputs

that steer the system from ξ to T
1
q

ξ→ηξ, then choose suitable
variables to minimize W .

Remark 1. If B in system (1) is diagonalizable, i.e.
r = 0, the minimum-energy control problem has been
studied in [13] and the minimum-energy control sequence
can be computed by applying the algorithm proposed in [13].
We only need to let A be an identity matrix in [13], and
then obtain the following analytic expression for the control
energy from [13], which is

W = W (K) = (ϕ2
n − 2ϕn−1)

−
2

n∏
i=1

λi(ϕn +
n∑

i=1

1
λi
)

K
+

n∏
i=1

(λi)
2

K2

defined on (−∞, 0) ∪ (0,+∞), where ϕn, ϕn−1 and λi

are as given in Theorem 1 in [13]. Thus, K is the only
parameter so that the minimum-energy of system (1) can
be easily analyzed by derivating W (K) with respect to K.
Furthermore, [13] proposed an algorithm to find the K and
corresponding minimum value of W (K). But for system (1)
with nondiagonalizable structure, there are four parameters
λm+1, λm+2, q and K to choose and W becomes a function
of four variables. The method in [13] is no longer applicable.

III. MAIN RESULTS

In this section, we propose an algorithm to solve the
minimum-energy control problem of the nearly-controllable
system (1). To this end, we need to derive the control energy
W .

Note that 1 +KG (s) = 0 ⇔

s (s+ λ1)
2 · · · (s+ λm)

2
(s+ λm+1) (s+ λm+2)+

K
(
(−1)

2m+2
µ1s

2m+2 + · · ·+ (−1)µ2m+2s+ 1
)
= 0.

Since the above equation has no zero root if K ̸= 0,
multiplying both sides of it by 1

s2m+3 , we have(
1 +

λ1

s

)2

· · ·
(
1 +

λm

s

)2(
1 +

λm+1

s

)(
1 +

λm+2

s

)
+

K

(
(−1)

2m+2
µ1

1

s
+ · · ·+ (−1)µ2m+2

1

s2m+2
+

1

s2m+3

)
= 0. (6)

Let z = 1
s , then eq. (6) can be rewritten as

(1 + λ1z)
2 · · · (1 + λmz)

2
(1 + λm+1z) (1 + λm+2z)+

K
(
(−1)

2m+2
µ1z + · · ·+ (−1)µ2m+2z

2m+2 + z2m+3
)

= 0. (7)

where the coefficients of z2m+3, z2m+2, and z2m+1 are

K,

(
K (−1)µ2m+2 + λm+1λm+2

m∏
i=1

λ2
i

)
,

K (−1)
2
µ2m+1 + λm+1λm+2×

m∏
i=1

λ2
i

(
1

λ2m+1
+

1

λ2m+2
+

m∑
i=1

2

λi

)

respectively. It follows from the Viète’s formulas that

2m+3∑
i=1

zi = µ2m+2 −
λm+1λm+2

m∏
i=1

λ2
i

K
,∑

1≤i1<i2≤2m+3

zi1zi2 = µ2m+1+

λm+1λm+2

m∏
i=1

λ2
i

(
1

λ2m+1
+ 1

λ2m+2
+

m∑
i=1

2
λi

)
K

,

where z1,z2, ..., z2m+3 are the roots of (7). In view of (5),
we obtain

W = q ×

(
2m+2∑
i=0

u2 (i)

)

= q ×

(
2m+3∑
i=1

1

s2 (i)

)
= q ×

(
2m+3∑
i=1

z2i

)

= q ×

(2m+3∑
i=1

zi

)2

− 2
∑

1≤i1<i2≤2m+3

zi1zi2



= q ×

µ2m+2 −
λm+1λm+2

m∏
i=1

λ2
i

K


2

− 2q × µ2m+1

−
2q × λm+1λm+2

m∏
i=1

λ2
i ·
(

1
λ2m+1

+ 1
λ2m+2

+
m∑
i=1

2
λi

)
K

.
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That is, we can obtain the analytical expression of the energy
function in the nondiagonalizable structure case, which is

W (λm+1, λm+2, q,K) = q × (µ2
2m+2 − 2µ2m+1)−

2qλm+1λm+2

m∏
i=1

λ2
i

(
µ2m+2 +

1
λ2m+1

+ 1
λ2m+2

+
m∑
i=1

2
λi

)
K

+

q

(
λm+1λm+2

m∏
i=1

λ2
i

)2

K2
, (8)

where µ2m+1, µ2m+2 are related to λm+1, λm+2 and q in
(4). According to (8), if λm+1, λm+2 and q are fixed, we
can always minimize the control energy W (K) by applying
the algorithms proposed in [13]. As a result, our goal is to
configure control variables λm+1, λm+2 and q to minimize
the control energy W (λm+1, λm+2, q).

Although we have derived the analytical expression of W ,
it is not an analytical task to minimize it. This is because if
we take λm+1, λm+2, q as parameters not fix numbers, then
µ2m+1 and µ2m+2, which are both functions with respect
to them, cannot be analytically represented. Therefore, to
analyze W , we need to turn to an experimental way and
apply the root locus approach by Matlab. From (5), we know
that W is also determined by control inputs u(i), which are
reflected as the reciprocals of the root on the root locus.
Therefore, the closer the root is to the origin, the greater
W is. Based on the above analysis and the fact that |λm+1|
is the minimum in (3), we can roughly conclude that the
control energy is mainly determined by two factors: the
root locus starting from the origin denoted as α and the
root locus starting from λm+1 denoted as β. If there are
no other restrictions, we only need to make α far enough
away from the origin (i.e. at the breakaway point), and by
setting the appropriate λm+1 to make root of β the maximum
modulus (i.e. at the saddle point), the control energy can be
minimized.

Therefore, we propose a parameter configuration method
based on experiment and root locus theory so that the
control energy can be obtained which is very close to the
ideal minimum energy. Compared to the algorithms in the
diagonalizable structure case of [13], λm+1, λm+2, q are also
considered in the analysis of the minimum-energy problem
as control variables and thus the algorithm is more general.

Algorithm 2. Given a nearly-controllable system as in (1)
with initial state ξ and terminal state η in the same orthant
of Rn. Configure λm+1, λm+2, q,K and find the minimum-
energy control to steer the system from ξ to η.

Step 1. Apply Algorithm 1 to get the transfer function
and the corresponding root loci. Let γ denote the root locus
starting from λm+2 and δ denote the root locus with the
largest gain of the breakaway point except β. To analyze q,
first choose a certain value of q and configure λm+1, λm+2.

Step 2. First select the appropriate λm+1 and fix K at the
breakaway point of δ. There are following three situations
of possible minimum control energy with |λm+1| decrease:

(i) β is between the pole and the breakaway point; (ii) β
is exactly at the saddle point; (iii) β is between the saddle
point and the zero. Judge whether α is exactly δ. If so, adjust
the value of |λm+1| such that the point of β is exactly at
the saddle point, i.e. being situation (ii). Otherwise α is not
at the breakaway point in situation (ii), so adjust the value
of |λm+1| at situation (iii) such that the control energy is
minimum.

Step 3. Choose some test groups of λm+2 in a certain
range and get the corresponding λm+1 and the control energy
by skipping back to Step 2. If γ enters the complex domain
at this time, the minimum energy and the set of parameters
needs to be omitted, which is unavailable. Compare the
control energy of every group with each other and obtain a
group with minimum control energy as well as λm+2. Hence
λm+1 and λm+2 are configured accurately when q is fixed.
But the control energy is not necessarily the minimum in the
case of fixing K at the breakaway point of δ, so K needs to
be reconfigured.

Step 4. Consider (8) as a function of one parameter,
i.e. W (K), hence we can apply Algorithm 1 in [13] to get an
extreme value. Then get the minimum-energy control W (K)
and K accordingly.

Step 5. Back to Step 1, change the value of q and repeat
the previous steps. Owing to that larger value of q makes
larger control energy when the linear term q in (5) dominates,
only a few groups of q are needed to get the results. Compute
groups of control energy under different q by taking points
of root loci experimentally, and finally select the minimum
control energy and corresponding q.

Remark 2. λm+1 is directly related to the root locus β.
That is, when |λm+1| is too large or too small, the shape of
β change a lot. When |λm+1| is too small, the saddle point
vanishes so that the gain can only be chosen at the breakaway
point of β, which makes the root on α close to the origin.
The first factor α plays a major role and the control energy
is very large; when |λm+1| is too large, the root on β is very
close to the origin, and the second factor β plays a major
role, so the control energy is still very large. Therefore, when
|λm+1| decrease bit by bit, there exists a lower bound. Apart
from that, we note a restriction that the roots on α and β in
the complex domain cannot be selected. Therefore, we can
always find groups of λm+1 and K to satisfy the control
energy within a certain range, like situation (ii) in Step 2.

Remark 3. Step 5 of configuring q is more tedious in
taking points, which takes a lot of time. We have to choose
many test groups of q, and get corresponding λm+1 and
λm+2. In fact, we do not need to pre-configure λm+1 and
λm+2 every time by simplifying the Algorithm 2, but fix
the parameter λm+2. Each test group of q only needs to
fix λm+2 and configure different λm+1 to get the control
energy of the system (1), then we can determine the value
of q when the energy is minimum. Finally, the minimum
energy control of the system (1) can be roughly obtained
by configuring λm+1 and λm+2 directly after q has been
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fixed. Suppose m test groups of λm+1, λm+2 in Step 3 and
n test groups of q in Step 5, then we only need to compute
(m+ n) times of control energy rather than (m× n) times,
which greatly reduces the complexity. Two examples in the
following section both adopt the simplification method.

IV. SIMULATIONS

In this section, we present two examples to illustrate
Algorithm 2.

Example 1. Consider the system

x (k + 1) =

I + u (k)


1 1 0 0 0
0 1 0 0 0
0 0 1.8 1 0
0 0 0 1.8 0
0 0 0 0 −2


x (k) ,

(9)
with initial state ξ =

[
1 1 1 1 1

]T and terminal
state η =

[
20 20 20 10 10

]T
, where x (k) ∈ R5,

u (k) ∈ R and m = 3. According to Theorem 1, there exist q
groups of control inputs steering the system from ξ to η, each
group of which contains 9 control inputs. The reciprocals of
the 9 control inputs are on the root loci of 1+KG (s) = 0 in
[4]. The system (9) has four pairs of root loci, and α is not
δ, i.e. the root locus with the largest gain of the breakaway
point. Therefore, we adjust the value of |λ4| at the situation
(iii) in Step 2 of Algorithm 2. According to Remark 3, we
fix λ5 a appropriate value, select different groups of q and
compute the minimum energy in Algorithm 2. For example,
we take λ5 = −3, and adjust value of λ4 to balance root of
α and root of β. Groups of control energy and λ4 are shown
in Fig. 1.
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Fig. 1. The diagram of λ5 = −3

In Fig. 1, blue points denote the minimum control energy
and red points denote the corresponding |λ4| when q varies.
It should be noted that the “minimum” here is for λ4. Since
minimum control energy has an extreme value when q = 2,
we can configure q = 2 and obtain λ4, λ5 according to Steps
2, 3. Groups of control energy and λ4 are shown in Fig. 2.

In Fig. 2, blue points denote the minimum control energy
and red points denote the corresponding |λ4| when λ5 varies.
The “minimum” here is also for λ4. More specifically, the
black points need to be excluded, which are the unsolvable
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Fig. 2. The diagram of q = 2

points in Step 3 (γ enters the complex domain). From Fig.
2 we know that the minimum control energy takes in the
case that q = 2, λ4 = 0.608, λ5 = −2.3. By choosing
K = 1.0454 in Step 4, the corresponding root loci are shown
in Fig. 3.
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Fig. 3. The root loci of 1 +KG (s) = 0

From the root loci of 1+KG (s) = 0 in Fig. 3, we obtain
the roots and compute the corresponding reciprocals, which
are

u(0) ≈ 0.4372, u(1) ≈ 0.4667, u(2) ≈ 0.5323,

u(3) ≈ −0.5232, u(4) ≈ −0.6624, u(5) ≈ −0.6652,

u(6) ≈ −1.9998, u(7) ≈ 5.1406, u(8) ≈ −5.1846.

One can now verify that, by 2 groups of the above control
inputs, system (9) can be steered from ξ to η and the
minimum control energy

W = 2×

(
8∑

i=0

u2 (i)

)
≈ 118.3.

Example 2. Consider the system

x (k + 1) =

I + u (k)


1 1 0 0
0 1 0 0
0 0 −2 1
0 0 0 −2


x (k) ,

(10)
with initial state ξ =

[
1 1 1 1

]T
and terminal state

η =
[
20 20 10 10

]T
, where x (k) ∈ R4, u (k) ∈ R

and m = 2. According to Theorem 1, each group exists 7
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control inputs. Compared with Example 1, α is the root locus
δ exactly. Therefore, we turn to adjust the value of |λ3| at
the situation (ii) in Step 2 of Algorithm 2. Also let λ4 =
−3, then we compute the minimum energy and determine
corresponding q. Groups of control energy and λ3 are shown
in Fig. 4.

0 2 4 6 8 10 12 14 16 18 20

q

0

50

100

150

200

250

M
in

im
um

 S
ys

te
m

 E
ne

rg
y

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

m
+

1

m+2
=-3

WK

m+1

Fig. 4. The diagram of λ4 = −3

From above diagram, we configure q = 2 and obtain
λ3, λ4 according to Steps 2, 3. Groups of control energy
and λ3 are shown in Fig. 5.
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From Fig. 5 we finally obtain that the minimum control
energy takes in the case that q = 2, λ3 = 0.61, λ4 = −2.7.
Choose K = 1.0454 by Step 4, and the corresponding root
loci are shown in Fig. 6. Computing the reciprocals of the
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Fig. 6. The root loci of 1 +KG (s) = 0

roots yields

u(0) ≈ 0.3763, u(1) ≈ 0.4127, u(2) ≈ 0.6719,

u(3) ≈ −0.8237, u(4) ≈ 1.4271, u(5) ≈ −2.7929,

u(6) ≈ −2.7929.

By 2 groups of the above control inputs, system (10) can be
steered from ξ to η and the minimum control energy

W = 2×

(
6∑

i=0

u2 (i)

)
≈ 38.17.

V. CONCLUSIONS

In this paper, the problem of minimum-energy control for
a class of nearly-controllable discrete-time bilinear systems
is considered. Based on Matlab, a parameter configuration
algorithm is proposed to solve the minimum-energy control
inputs to steer the systems between a given pair of states. Ex-
amples are given to illustrate the proposed algorithm which
show that the minimum-energy is solvable by experimental
method.
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