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School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191 
zhangjing2013@buaa.edu.cn 

Abstract. The distributed propulsion configuration (DPC) is a new aircraft de-

sign concept proposed for the future and the design causes the tight coupling be-

tween aerodynamics, flight and propulsion system and creates the redundancy of 

control input. Therefore, an integrated optimal control that can improve flight 

performance is required. In this paper, particle swarm optimization (PSO) based 

on Gaussian Process Regression (GPR) (GPR-PSO) is proposed to solve the op-

timization control problem. GPR has obvious advantages in small sample, high 

dimensional, and non-linear modeling problems. GPR is used to model L/D and 

control inputs based on sample data. PSO is a global optimization method with 

high accuracy and fast speed. The model given by GPR is used as the objective 

function for PSO to search for the optimal solution in the feasible region, and a 

control allocation strategy can be determined based on the optimization result. 

Simulation results of example and flight/propulsion integrated optimization con-

trol show that GPR-PSO leads better accuracy compared to PSO based on piece-

wise linear interpolation and their convergence speed is similar. 

Keywords: Distributed propulsion configuration, Integrated flight/propulsion 

optimal control, Gaussian Process Regression, Particle swarm optimization. 

1 Introduction 

In recent years, the world's aviation industry has focused on economics and environ-

mental protection. The distributed propulsion configuration (DPC) is a new aircraft de-

sign concept proposed for the future. Its characteristics are: the blended wing body 

(BWB) layout can significantly improve the lift/drag characteristics;  the use of several 

sets of semi-buried propulsion system distributed throughout the airfoil can take the 

initiative to change the field characteristics, to achieve active adjustment of aerody-

namic and load distribution [1] [2]. This design makes the flight, aerodynamics and 

propulsion more closely coupled, creates more control variables and leads to the redun-

dancies of control. Therefore, the space of control allocation optimization is large with 

many optimization variables and physical constraints. The control allocation problem 

is one of the core difficulties in solving the control problem of the new configuration 

aircraft. It requires high levels on speed and accuracy of the optimization algorithms. 
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Because of the actuator redundancies, the integrated control problem of DPC aircraft 

can turn into a control allocation problem. The research has experienced the develop-

ment from static to dynamic, from direct allocation to optimal allocation and from linear 

optimization to non-linear optimization. Integrated flight/propulsion optimization is a 

constrained optimization problem without explicitly expression, there is no exact func-

tion of the objective function and constraints, and only a large number of input and 

output observation samples obtained through numerical simulation. Traditional alloca-

tion methods, such as pseudo-inverse method and tandem chain method perform poorly 

in optimization [3]. And some intelligent optimization methods have also been applied 

in this field. [4] use genetic algorithms to solve the control allocation problem. [5] give 

and compare the simulation results of control allocation based on particle swarm opti-

mization, ant colony algorithm and RBF neural network. [6] introduce the deep learn-

ing method to solve the nonlinear control allocation problem of space reentry vehicle. 

[7] introduce the research results of control allocation are discussed respectively from 

three aspects of static, dynamic and nonlinear control allocation. [8] use dynamic allo-

cation method in the aircraft with thrust vector and prove dynamic property and steady 

property of the algorithm. [9] use quadratic optimal control that takes amplitude and 

velocity constraints into consideration to deal with the control redundancy. [10] propose 

a combination of genetic algorithm and mathematical planning method to solve the 

control allocation problem. [11] apply particle swarm optimization to the design of gen-

eralized inverse control allocation method. Most of these methods perform mediocrely 

in speed, and the modeling of the objective function through samples also has a large 

deviation, which makes the optimization result dissatisfied. 

Compared with the traditional interpolation method used to process flying data, 

Gaussian Process Regression (GPR) has smaller modeling bias and reduces overfitting 

when dealing with high-dimensional small sample data modeling problems. It can make 

the model of objective function more accurate and improve the optimization efficiency 

and accuracy. Particle swarm optimization (PSO) is a global optimization algorithm on 

random search. The advantages of PSO are faster optimization speed and breakthrough 

of local optimization through parameter adjustment to reach more accurate global op-

timization results. 

This paper researches the DPC aircraft, describes its optimization problem and fea-

tures and introduces how to solve the problem by GPR modeling the objective function 

and PSO searching the optimal solution. Compared with traditional modeling optimi-

zation methods, an example is used to explain the advantages of the combined optimi-

zation method. Finally, the method is combined with experimental data to solve the 

integrated flight/propulsion optimization problem and analyze the results. 

2 Description of optimization problem  

2.1 Integrated Flight/Propulsion Optimization Control Program 

There is a strong coupling effect between propulsion system and aerodynamic as the 

result of the DPC, called Boundary layer ingestion (BLI). Propulsion system and aero-
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dynamic significantly influence each other by BLI. BLI can improve the aircraft aero-

dynamic. It also leads to the control of the propulsion system, such as the boost ratio 

and the area of the tail nozzle, which will directly affect the aerodynamic of the aircraft 

and change the force and torque on the aircraft. In this study, a 3-dimensional model of 

a 3-engine DPC aircraft is built and divided the mesh for integrated modeling, espe-

cially for propulsion system modeling. Using the boundary conditions provided by the 

propulsion system model, run numerical simulation of BLI by CFD calculation [6]. 

Based on the integrated flight/propulsion model and simulation data, GPR is used to 

model the hidden relationship between control variables and flight performance. Then 

PSO algorithm is used to find the solution of optimal control allocation, which maxim-

izes flight performance while meeting constraints. 

2.2 Mathematical form of Optimization Problem 

The control allocation problem can be stated as follows: 

 𝐵𝐮 = 𝐯  

 𝑠. 𝑡. 𝐮min ≤ 𝐮 ≤ 𝐮max  

 max 𝐶𝐿𝐷(𝒖) (1) 

In these formulas, 𝐮 = [𝜋𝑘𝑙
∗ , 𝐴8𝑙, 𝜋𝑘𝑚

∗ , 𝐴8𝑚,  𝜋𝑘𝑟
∗ , 𝐴8𝑟 , 𝛼] , parameters represent the 

boost ratio, tail nozzle area of the three groups of engines and angle of attack in 

turn, 𝐯 = [𝐿𝐶 , 𝑀𝐶 , 𝑁𝐶 , 𝑇𝐶]𝑇, parameters represent expected roll, pitch and yaw moment 

and thrust in turn. max 𝐶𝐿𝐷(𝐮) means maximizing the L/D. 𝐮𝑚𝑖𝑛 , 𝐮𝑚𝑎𝑥  is the lower and 

upper limits of input. 

 Aerodynamic data of the DPC aircraft is given by CFD numerical simulation under 

different flight conditions, angle of attack, and control parameters of the propulsion 

system. According to the flight/propulsion mechanical model, we obtain the force and 

moment required by the aircraft under different cruise conditions. The optimization 

aims at improving the flight performance by maximizing the L/D on the premise of 

meeting control requirements and physical constraints. 

 The optimization variables have 7 dimensions without restrictions and the relation-

ship between the target L/D and the input is a constraint optimization problem without 

explicit expression. So, GPR is used to model the objective function based on the data 

of input and L/D from CFD calculation then optimize the agent model by PSO. At last 

the optimal control allocation can be determined by the solution of PSO. 

3 Model and Optimization based on GPR-PSO 

3.1 Model based on GPR 

GPR fits a Gaussian process on the set of known data samples. It describes objective 

function with a multivariate joint Gaussian distribution and predict the distribution of 

new point of function. Gaussian process consists of arbitrary finite random variables 
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with a joint Gaussian distribution. Its properties are completely determined by the mean 

function and covariance function, that is:  

 𝑚(𝑥) = 𝐸[𝑓(𝑥)] (2) 

 𝑘(𝑥, 𝑥′)= 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] (3) 

where 𝑥, 𝑥′ are random variables, so Gaussian process can be defined as: 

 𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (4) 

The model of L/D is set to 𝐶𝐿𝐷 = 𝑓(𝐮) ,where u is the control input and f(u) is un-

known. We sample the control input uniformly in the feasible region into the set X and 

put their corresponding L/D from CFD simulation into set y. 𝑥∗ is prediction point of 

control input and 𝑓∗ is the corresponding prediction L/D. Generally, for convenience, 

the mean function is preprocessed to 0 then we get the joint distribution of y and 𝑓∗: 

[
𝑦
𝑓∗

] ~𝑁(0, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼𝑛 𝐾(𝑋, 𝑥∗)

𝐾(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)
]) , where 𝐾(𝑋, 𝑋) = 𝐾𝑛 = (𝑘𝑖𝑗)𝑛∗𝑛  is a n*n 

order symmetric positive covariance matrix, 𝑘𝑖𝑗 = (𝑥𝑖 , 𝑥𝑗) measures the correlation be-

tween 𝑥𝑖 , 𝑥𝑗 , 𝐾(𝑋, 𝑥∗) = 𝐾(𝑥∗, 𝑋)𝑇 is the n*1 order covariance matrix of 𝑥∗ and X, 𝐼𝑛 

is n*n order identity matrix. Then, after factorizing the joint distribution using the Schur 

complement for the joint Gaussian, the posterior distribution of L/D at the prediction 

point can be calculated as 𝑓∗|𝑋, 𝑦, 𝑥∗~𝑁(𝑓∗̅, 𝑐𝑜𝑣(𝑓∗)), where  

 𝑓∗̅ = 𝐾(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛]−1𝑦 (5) 

 cov(𝑓∗)= 𝑘(𝑥∗, 𝑥∗) − 𝐾(𝑥∗, 𝑋) [𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛]−1𝐾(𝑋, 𝑥∗) (6) 

is the mean and variance of 𝑓∗ at the corresponding 𝑥∗ [13]. 

 As the mean is set to 0, the focus of GPR is to determine the covariance function 

also called kernel function. Matern kernel and the Gaussian kernel are commonly used 

among kernel function [14]. For example, Gaussian kernel is used in this paper, it is 

defined as: 

 𝜅(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
1

2
(𝑥 − 𝑥′)𝑇𝛴−1(𝑥 − 𝑥′)) (7) 

where  is the kernel parameter matrix. When the kernel function is specified, the next 

job is to determine the parameters of the kernel function on the sample set, which is 

called the training hyperparameters for the GPR (or the process of GP model training 

and updating). The kernel parameters or hyperparameters can be estimated by empirical 

Bayesian methods. In order to reduce the computational complexity, many approximate 

method can be used [15]. 

3.2 Optimization based on PSO 

PSO is a swarm intelligence optimization algorithm derived from the problem of bird 

predation. 
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First, PSO randomly generates several points in the feasible region as the initial 

swarm. Each particle of swarm represents a potential solution. The initialization process 

determines the size of the swarm, the initial position of each particle, and the initial 

moving speed. Then, PSO calculates fitness of each particle. Fitness indicates the qual-

ity of a particle. In this study, the fitness is calculated by the agent model that is estab-

lished by GPR, fitness=𝑓∗̅(u). Next, PSO find the individual best fitness, which is the 

optimal value of individual historical fitness, and global best fitness, which is the opti-

mal value of the swarm. At the beginning of each iteration, PSO updates the speed of 

each particle according to the speed update formula and then uses new speed to update 

the position [10]. 

Update formula is as follows: 

 𝑉𝑖𝑑
𝑘+1 = 𝜔𝑉𝑖𝑑

𝑘 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡
𝑘 − 𝐮𝑖𝑑

𝑘 ) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡
𝑘 − 𝐮𝑖𝑑

𝑘 ) (8) 

 𝐮𝑖𝑑
𝑘+1 = 𝐮𝑖𝑑

𝑘 + 𝑉𝑖𝑑
𝑘+1 (9) 

where  𝑉𝑖𝑑
𝑘  is the velocity of particle in the k-th iteration, 𝐮𝑖𝑑

𝑘  is the position of particle 

in the k-th iteration as well as  a group of control input, 𝑟1, 𝑟2 are random numbers, 

𝑐1, 𝑐2 are adjustable coefficients, 𝑃𝑏𝑒𝑠𝑡  is the position of individual best fitness, 𝐺𝑏𝑒𝑠𝑡  

is the position of  best fitness in the swarm.  

In each iteration, algorithm calculates fitness of each particle, updates 𝑃𝑏𝑒𝑠𝑡  and 

𝐺𝑏𝑒𝑠𝑡  by comparing the fitness until it finds the satisfied global best fitness. Algorithm 

stops when the situation that 𝐺𝑏𝑒𝑠𝑡  doesn’t change or change within range keeps until 

the set iteration is reached. Algorithm provides the last  𝐺𝑏𝑒𝑠𝑡  as the optimal result. 

In actual optimization, 𝑐1, 𝑐2, 𝜔 need to be adjusted to ensure the accuracy and effi-

ciency of algorithm. For the problem in this paper, we set different 𝜔 in different peri-

ods of optimization. In the early, value of 𝜔 is large to keep the wide search range and 

avoid falling into local optimum. In later period, value of 𝜔 gets smaller and smaller to 

search exactly and converge fast. We decrease 𝑐1 and increase 𝑐2. Let the search to the 

global, and weaken the influence of a large number of existing local optimizations on 

the convergence speed and accuracy. Generally, the population size is set to n, the max-

imum number of iterations is N, and the time complexity of the algorithm is 𝑂(𝑛2). 

4 Simulation and Analyze 

4.1 Comparison of agent model and optimization 

We select the function f(x)=0.5 −
𝑠𝑖𝑛2(√𝑥2+𝑦2)−0.5

[1+0.001∗(𝑥2+𝑦2)]2 as the example for modeling com-

parison. The function only reaches maximum value of 0 at one point, corresponding 

position (0,0). There are a large number of local optimums, and peaks and valleys al-

ternate.  
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Fig. 1. Original function 

As shown in Fig.1, we randomly and uniformly choose 100,00 points from original 

function and do grid drawing. 

 We randomly and uniformly choose 4,00 points as the sample for modeling. Based 

on the sample, GPR and Piecewise linear interpolation (PLI) is used for modeling, then 

predict 100,00 points selected before, plot and compare the errors. 

 

Fig. 2. Agent model generated by PLI 
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Fig. 3. Agent model generated by GPR 

Fig2, Fig3 are the modeling results of GPR and PLI at 100,00 points selected. The 

sum of squared errors of GPR is 0.00085594, and the sum of squared errors of PLI is 

4.8225. On the problem of fitting a large number of data to this small sample, PLI shows 

obvious overfitting, and the cumulative error is large. The model given by GPR has 

obvious advantages in these two aspects. Due to over-fitting in the model from PLI, the 

values fluctuate greatly within the interval, so subsequent optimization may be more 

likely to fall into a local optimum. 

 

Fig. 4. Optimization results of GPR-PSO and Interp-PSO 

PSO is used to optimize the two models (in this example, the optimization is to find the 

maximum value). The result is shown in Figure 2. The optimal value of GPR-PSO is 

0.9997, corresponding position is (-0.000113, -0.000438). The optimal value of Interp-

PSO is 0.9896, corresponding position is (-0.1839，-3.1579). PSO starts from same 

initial population in both searches, because of the difference between models, they lead 

different initial fitness. The optimal solution from the model given by GPR is closer to 
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the true value and has obvious advantages. There are two main reasons. One is that 

model given by GPR has a smaller deviation and is closer to the real situation near the 

optimal value. Second, the over-fitting problem of the model given by PLI caused the 

optimization to fall into a local optimum. 

 This example is similar to flight/propulsion parameters optimization problem in this 

paper. The optimization problem of the paper is higher in dimensionality and the sample 

points are sparser, the advantages of GPR will be more obvious 

4.2 Integrated Flight/Propulsion Optimization Control based on GPR-

PSO 

Select the cruise state with H = 5000 m and Ma = 0.6 for simulation analysis. In this 

flight state, the aircraft is in a balanced flight state, and the residual force and moment 

are zero, 𝐿𝑅𝑐 = 0, 𝑇𝑅𝑐 = 0, 𝑀𝑅𝑐 = 0. The control parameters of three groups of engines 

are the same, 𝜋𝑘
∗  and 𝐴8 of all groups are the same. The adjustable range of 𝜋𝑘

∗  and 𝐴8 

is defined according to the thrust required range of the aircraft cruise. The integrated 

flight/propulsion optimization control problem can be stated as follows: 

max 𝐶𝐿𝐷(𝛼, 𝜋𝑘
∗ , 𝐴8) 

 𝑠. 𝑡. 𝐿𝑅(𝛼, 𝜋𝑘
∗ , 𝐴8) = 0 

 𝑇𝑅(𝛼, 𝜋𝑘
∗ , 𝐴8) = 0, 𝑀𝑅(𝛼, 𝜋𝑘

∗ , 𝐴8) = 0 

                              −2𝑜 ≤ 𝛼 ≤ 8𝑜, 1.38 < 𝜋𝑘
∗ < 1.58, 1.4 < 𝐴8 < 1.56 (10) 

We establish the agent model with 210 random uniform samples and their corre-

sponding L/D from CFD simulation by GPR. The agent model is used as the objective 

function for PSO. We take the intersection from the range of each control input and the 

balancing conditions of forces and moments as the search range. 
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Fig. 5. Optimization result of GPR-PSO 

The optimization process is shown in Fig.5. 

 

Fig. 6. Optimization results of GPR-PSO and Interp-PSO 

Repeat the optimization with PLI instead of GPR and both results are shown in Fig.6. 

 The maximum L/D given by GPR-PSO is 9.666 and corresponding input is 

A8=1.4973, PiKStar=1.5149, alpha=4.8086. The maximum L/D given by Interp-PSO 

is 9.5251, corresponding input is A8=1.56, PiKStar=1.5, alpha=6. 

 Comparing the results of the above optimization, it is obvious that the optimization 

based on GPR leads better solution, and the optimization based on PLI falls into the 

local optimum. The model established by GPR is smoother and closer to reality, so the 

optimization results cross multiple local optimal solutions and better guides the process 

of optimization. They take similar time and GPR-PSO gives better optimization perfor-

mance.  

Compared with traditional optimization based on interpolation models, GPR-PSO 

achieves better optimization results with more accurate and smooth modeling when the 

efficiency is similar. The advantage of GPR-PSO is obvious under the small sample 

and high dimensionality. 

5 Conclusion 

This paper uses the advantages of GPR to deal with high-dimensional small sample 

modeling problems and the features of PSO for global optimization and fast conver-

gence under appropriate parameter settings to solve the flight/propulsion integrated op-

timization control problem for the DPC aircraft and gets better result than traditional 

PLI modeling and PSO. The optimization time is basically controlled within an ac-

ceptable range. It also proves that BLI plays an important role in the performance im-

provement of the DPC aircraft, and there is huge development potential at the optimi-

zation level. 
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